• Title/Summary/Keyword: optimal

Search Result 39,428, Processing Time 0.061 seconds

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

A Study on the Analysis and Optimal Control of Nonlinear Systems via Walsh Function (월쉬함수에 의한 비선형계의 해석 및 최적제어에 관한 연구)

  • Kim, Jin-Tae;Kim, Tae-Hun;Lee, Myeong-Gyu;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.354-362
    • /
    • 2000
  • This paper presents the new adaptive optimal scheme for the nonlinear systems, which is based on the Picard's iterative approximation and fast Walsh transform. It is well known that the Walsh function approach method is very difficult to apply for the analysis and optimal control of nonlinear systems. However, these problems can be easily solved by the improvement of the previous adaptive optimal scheme. The proposed method is easily applicable to the analysis and optimal control of nonlinear systems.

  • PDF

Optimal Planning for Dispersed Generating Sources in Distribution Systems (배전계통에 있어서 열병합 분산형전원의 최적 도입계획에 관한 기초적 연구)

  • Shim, Hun;Rho, Dae-Seok;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.513-515
    • /
    • 2000
  • This paper deals with a method for determining an optimal operation strategy of dispersed generating sources considering thermal merits. The optimal operation of these sources can be determined by the principle of equal incremental fuel cost. This paper presents an optimal operation strategy using the Kuhn-Tucker's optimal conditions and also an priority method to decide the optimal location of those sources in power systems. The validity of the proposed algorithms are demonstrated using a model system.

  • PDF

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF

Optimal Grasp Planning of Object Based on Weighted Composite Grasp Index (가중치를 갖는 복합 파지 지수를 기반으로 한 물체의 파지 계획)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Oh, Sang-Rok;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1003-1012
    • /
    • 2000
  • When a robot hand grasp an object, the number of ways to grasp it stably are infinite and thus an optimal grasp planning is needed to find the optimal grasp points for satisfying the objective of the given task. In this paper, we first define some grasp indices to evaluate the quality of each feasible grasp and then a weighted composite grasp index by combining all of the grasp indices is also defined. Next, we propose a method to find the optimal grasp points of the given object by comparing the defined weighted composite grasp index for each feasible grasp points. By simulation results, we show the effectiveness of the proposed optimal grasp planning method and also discuss the trend of each grasp index as the grasp polygon.

  • PDF

An Optimal Thresholding Method for the Voxel Coloring in the 3D Shape Reconstruction

  • Ye, Soo-Young;Kim, Hyo-Sung;Yi, Young-Youl;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1695-1700
    • /
    • 2005
  • In this paper, we propose an optimal thresholding method for the voxel coloring in the reconstruction of a 3D shape. Our purposed method is a new approach to resolve the trade-off error of the threshold value on determining the photo-consistency in the conventional method. Optimal thresholding value is decided to compare the surface voxel of photo-consistency with inside voxel on the optic ray of the center camera. As iterating the process of the voxels, the threshold value is approached to the optimal value for the individual surface voxel. And also, graph cut method is reduced to the surface noise on eliminating neighboring voxel. To verify the proposed algorithm, we simulated in the virtual and real environment. It is advantaged to speed up and accuracy of a 3D face reconstruction by applying the methods of optimal threshold and graph cut as compare with conventional algorithms.

  • PDF

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

Optimal Conditions for the Growth of Soybean Sprouts by Ozone Water Watering (오존수 살수(撒水)에 의한 콩나물의 성장조건 최적화)

  • 김일두;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.11 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • This study was conducted to investigate the optimal conditions for the growth of soybean sprouts by ozone water watering. Optimal conditions for ozone water watering of soybean sprouts during cultivation at 2$0^{\circ}C$ were evaluated with ozone concentration(0.1~O.5 ppm) and watering frequency(1~9 times) by response surface methodology. The optimal conditions for growth of soybean sprouts were ozone concentrations of 0.20~0.32 ppm, ozone treatment frequency of 3.0~4.4 times. Germination rates, hypocotyl weights and hypocotyl lengths in the soybean sprouts cultivated under the optimal conditions increased by 13.3, 10.1 and 11.9%, respectively, whereas root weights decreased by 89.0%.

  • PDF

A study on the optimal parameter design of rapid thermal processing to improve wafer temperature uniformity (8인치 웨이퍼의 온도균일도향상을 위한 고속열처리공정기의 최적 파라미터에 설게에 관한 연구)

  • 최성규;최진영;권욱현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.68-76
    • /
    • 1997
  • In this paper, design parameters of rapid thermal processing(RTP) to minimize the wafer temperature uniformity errors are proposed. Lamp ring positions and the wafer height are important parameters for wafer temperature uniformity in RTP. We propose the method to seek lamp ring positions and the wafer gheight for optimal temperature uniformity. The proposed method is applied to seek optimal lamp ring positions and the wafer feight of 8 inch wafer. To seek the optimal lamp ring positions and the wafer height, we vary lamp ring positions and the wafer height and then formulate the wafer temperature uniformity problem to the linear programming problem. Finally, it is shown that the wafer temperature uniformity in RTP designed by optimal problem. Finally, it is hsown that the wafer temperature uniformity is RTP designed by optimal parameters is improved to comparing with RTP designed by the other method.

  • PDF

A study on an optimal design for a dual-band patch antenna with a shorting pin using the evolution strategy (진화 알고리즘을 이용한 단락핀이 있는 이중대역 패치 안테나 최적 설계 연구)

  • Ko, Jae-Hyeong;Kwon, So-Hyun;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.221-224
    • /
    • 2009
  • In this paper, we deal with the development of an optimal design program for a dual-band of 0.92 GHz and 2.45 GHz with shorting pin and slot by using evolution strategy. the optimal shorting pin, coaxial feed and H-shaped patch are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The resonance frequencies of the dual-band antenna yielded by the optimal design program are 0.92 GHz and 2.45 GHz that show a good agreement to the design target values.

  • PDF