• 제목/요약/키워드: optical wavelength

검색결과 2,777건 처리시간 0.029초

저온 파장 보상을 위한 히터 내장형 CWDM(Coarse Wavelength Division Multiplexing) 광 송수신기에 관한 연구 (The Research on the Heated CWDM(Coarse Wavelength Division Multiplexing) Optical Transceiver for the Wavelength Compensation at the Low Temperature)

  • 권윤구;박경수;이지현;김창봉
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1263-1269
    • /
    • 2012
  • 본 논문은 광 통신용 CWDM(Coarse Wavelength Division Multiplexing) 광 송수신기 레이저에 히터를 내장시켜 저온 파장을 보상하기 위한 연구이다. 일반적으로 DFB(Distributed Feedback) 레이저 파장의 온도 변화량은 약 $0.1nm/^{\circ}C$ 정도이다. 즉 온도가 올라가면 파장도 올라가고, 온도가 내려가면 파장도 내려간다. 따라서 각 채널별 기준 중심 파장간의 간격이 20 nm인 CWDM 광 통신망에서는 근접 채널 간의 파장 간섭을 막기 위해서 동작 온도 범위를 넓힐 수 없는 문제를 갖고 있다. 이를 보완하기 위해 히터를 CWDM LD(Laser Diode) TO-CAN 패키지 바닥면에 부착하여 저온에서의 파장을 보상할 수 있다. 따라서 이를 이용해서 산업용 광 송수신기 동작 온도 범위인 $-40{\sim}+85^{\circ}C$에서 기준 파장대비 +/-6.5 nm 변화폭에 만족시킬 수가 있었다.

광섬유에서 브릴루앙 이득 스펙트럼의 파장과 선폭에 따른 의존성 연구 (Analysis of the wavelength and linewidth dependence of Brillouin gain spectrum in optical fiber)

  • 한영옥;은재정;최평석
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.13-16
    • /
    • 2000
  • Since stimulated Brillouin scattering (SBS) impact wavelength division multiplexing (WDM) optical transmission systems, it is important to understand the implication of SBS in the design of such lightwave systems. Therefore, Brillouin gain spectrum (BGS) is measured to characterize the effect of SBS in optical fiber. The Brillouin gain coefficient is found to vary as the wavelength and linewidth of source. Theoretically measurement of BGS shows a dependence on wavelength(λ) and on linewidth(Δν), respectively.

  • PDF

A Wavelength Allocation Method for Bidirectional Transmission in a CWDM Channel

  • Moon, Jung-Hyung;Choi, Ki-Man;Lee, Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제11권1호
    • /
    • pp.6-9
    • /
    • 2007
  • We propose a wavelength allocation method for bidirectional transmission in a coarse wavelength division multiplexing channel. The method can be accommodated by assigning a different upstream wavelength from the downstream wavelength at room temperature to eliminate penalties induced by backscattering, including Rayleigh backscattering. We suggest a procedure to obtain the minimum wavelength difference.

파장변화에 매우 안정한 시준렌즈 설계 (Optical Design of a Collimator Lens That Is Very Stable Against Chromatic Variation)

  • 이소영;이종웅
    • 한국광학회지
    • /
    • 제28권2호
    • /
    • pp.68-74
    • /
    • 2017
  • 특정한 파장대역에서 파장변화에 따른 굴절능의 변화를 1차, 2차 미분까지 보정하여 기준파장과 그 인근 파장 대역에서 굴절능의 변화가 매우 적도록 안정화된 광학계를 설계하는 방법에 대하여 연구하고, 이를 적용하여 회절한계의 시준렌즈를 설계하였다. 설계된 광학계는 파장 변화에 대하여 매우 안정하였고, 파장 360~410 nm 대역에서 유효초점거리의 변화가 0.002% 이내로 매우 적었다.

A Novel Wavelength Sensor Using A Structure Of Optical Directional Coupler

  • Sae-Tang, K.;Somkuarnpanit, S.;Khuntaweetep, S.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.542-544
    • /
    • 2002
  • This paper proposes a wavelength sensor based on the optical directional coupler. The finite-difference time-domain (FDTD) is used in analysis of the field intensity of tile light propagating thorough the structure. The device with tile width of 0.4 $\mu\textrm{m}$ and the thickness of 0.4 $\mu\textrm{m}$, which corresponding with the coupling length of 40$\mu\textrm{m}$, would provide tile linear relationship between the coupling efficiency against the wavelength. The device can sense the wavelength in a range between 1.5$\mu\textrm{m}$ and 1.6$\mu\textrm{m}$, with continuous resolution. The wide wavelength could be also done be paralleling th light to a number of wavelength-sensing modules with particularly required bands. Therefore, it could be employed as the wavelength sensing for most optical communications, optoelectronics, laser applications and etc.

  • PDF

광 부호 분할 다중접속 네트워크를 위한 파장/시간 2차원 코드의 새로운 부호기/복호기 (New Encoder/Decoder with Wavelength/Time 2-D Codes for Optical CDMA Network)

  • 황유모
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.1035-1040
    • /
    • 2009
  • We propose a new encoder/decoders based on an tune able wavelength converter(TWC) and an arrayed waveguide grating(AWG) router for large capacity optical CDMA networks. The proposed encoder/decoder treats codewords of wavelength/time 2-D code simultaneously using the dynamic code allocation property of the TWC and the cyclic property of the AWG router, and multiple subscribers can share the encoder/decoder in networks. Feasibility of the structure of the proposed encoder/decoder for dynamic code allocation is tested through simulations using two wavelength/time 2-D codes, which are the generalized multi-wavelength prime code(GMWPC) and the generalized multi-wavelength Reed-Solomon code(GMWRSC). Test results show that the proposed encoder/decoder can increase the channel efficiency not only by increasing the number of simultaneous users without any multiple-access interference but by using a relatively short length CDMA codes.

Wavelength Shar ing Optimization for Integrated Optical Path and Optical Packet Switch

  • Nguyen, Khanh-Huy;Bui, Dang-Quang;Hwang, Min-Tae;Choi, Myeong-Gil;Hwang, Won-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1805-1813
    • /
    • 2010
  • In this paper, we address the issue of how to improve performance of integrated optical path and optical packet. For supporting ultra-high-speed traffic, integration of optical paths and packets in a switch is one of key techniques in New Generation Networks. However, the wavelength allocation for optical packets and optical paths has not been efficiently resolved yet because there lacks of a systematic model for evaluating performance of the integrated switch. This paper models the operation of the integrated switch as a system of two servers, one for optical paths and the other for optical packets. From the model, we utilize Newton method to find an optimal policy for sharing of wavelength resources. Afterwards, we propose an algorithm to dynamically allocate wavelength resources in an integrated switch. Finally, we evaluate performance of that algorithm.

Wavelength Swept 모드 록킹된 광섬유 레이저를 이용한 광주파수 영역에서 반사계 (Optical frequency domain reflectometry based on Wavelength swept mode locked fiber laser)

  • 오명숙;박희수;김병윤
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.204-205
    • /
    • 2003
  • We demonstrate a novel OFDR system with compactness and short measurement time based on the use of a wavelength-swept mode-locked fiber laser. The optical source uses an intra-cavity tunable Fabry-Perot filter as a tuning element. The fiber laser sweeps 20 nm in less than 10 ms. Spatial resolution of 100 fm and total measurement range of several centimeters are demonstrate

  • PDF

폴리이미드가 코팅된 측면 연마 광섬유를 이용한 습도 센서 (Polyimide Film-coated Side-polished Optical Fiber Humidity Sensor)

  • 김광택;양재창
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.51-54
    • /
    • 2023
  • We investigated a humidity sensor based on a polyimide-coated side-polished optical fiber. The polyimide film absorbed moisture, causing the resonant wavelength of the sensor to shift to a longer wavelength owing to the changes in the optical properties of the film. The experimental results showed that the resonant wavelength of the device shifted by 17-18 nm when relative humidity changed from 30% to 90%.

Wavelength-Swept Cascaded Raman Fiber Laser around 1300 nm for OCT Imaging

  • Lee, Hyung-Seok;Lee, Hwi Don;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • 제19권2호
    • /
    • pp.154-158
    • /
    • 2015
  • We experimentally demonstrated a novel wavelength-swept laser using a cascaded Raman gain around 1310 nm. A 1064/1310 wavelength division multiplexing (WDM) coupler and coupled fiber Bragg gratings mirrors at 1064, 1117, 1175, 1240 nm are effectively used to increase the power efficiency in a laser ring cavity with highly non-linear fiber (HNLF) of 2 km. Linear wavelength sweeping is demonstrated with the 100 Hz triangular driving signal to fiber Fabry-Perot tunable filter (FFP-TF) around the 1310 nm region. The measured sweeping range and output power were 27 nm and 2.1 mW, respectively, which are suitable for optical coherence tomography (OCT) imaging.