Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.2.154

Wavelength-Swept Cascaded Raman Fiber Laser around 1300 nm for OCT Imaging  

Lee, Hyung-Seok (Department of Cogno Mechatronics Engineering, Pusan National University)
Lee, Hwi Don (Department of Cogno Mechatronics Engineering, Pusan National University)
Jeong, Myung-Yung (Department of Cogno Mechatronics Engineering, Pusan National University)
Kim, Chang-Seok (Department of Cogno Mechatronics Engineering, Pusan National University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.2, 2015 , pp. 154-158 More about this Journal
Abstract
We experimentally demonstrated a novel wavelength-swept laser using a cascaded Raman gain around 1310 nm. A 1064/1310 wavelength division multiplexing (WDM) coupler and coupled fiber Bragg gratings mirrors at 1064, 1117, 1175, 1240 nm are effectively used to increase the power efficiency in a laser ring cavity with highly non-linear fiber (HNLF) of 2 km. Linear wavelength sweeping is demonstrated with the 100 Hz triangular driving signal to fiber Fabry-Perot tunable filter (FFP-TF) around the 1310 nm region. The measured sweeping range and output power were 27 nm and 2.1 mW, respectively, which are suitable for optical coherence tomography (OCT) imaging.
Keywords
Optical coherence tomography; Fiber Raman amplifier; Wavelength-swept laser;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, "Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment," Electron. Lett. 37, 1281-1283 (2001).   DOI   ScienceOn
2 M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, "Experimental and numerical optimization of a fiber Raman laser," Opt. Commun. 203, 139-144 (2002).   DOI   ScienceOn
3 S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, "All-fiber widely tunable Raman fiber laser with controlled output spectrum," Opt. Express 15, 8438-8443 (2007).   DOI
4 F. Anquez, E. Courtade, A. SivUry, P. Suret, and S. Randoux, "A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm," Opt. Express 18, 22928-22936 (2010).   DOI
5 C. S. Kim and J. U. Kang, "Multiple wavelength switching of Raman fiber ring laser incorporating composite polarizationmaintaining fiber Lyot-Sagnac filter," Appl. Opt. 43, 3151-3157 (2004).   DOI
6 V. R. Supradeepa and J. W. Nicholson, "Power scaling of high-efficiency 1.5 ${\mu}m$ cascaded Raman fiber lasers," Opt. Lett. 38, 2538-2541 (2013).   DOI
7 K. Liu and E. Garmire, "Understanding the formation of the SRS stokes spectrum in fused silica fiber," IEEE J. Quantum Electron. 27, 1022-1030 (1991).   DOI   ScienceOn
8 H. S. Seo, K. Oh, and U. C. Paek, "Gain optimization of germanosilicate fiber Raman amplifier and its applications in the compensation of Raman-induced crosstalk among wavelength division multiplexing channels," IEEE J. Quantum Electron. 37, 1110-1116 (2001).   DOI   ScienceOn
9 S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).   DOI
10 R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).   DOI
11 M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locking wavelength swept laser with multiple SOAs," Opt. Express 16, 2547-2554 (2008).   DOI
12 E. J. Jeong, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, "Characterization of FBG sensor interrogation based on a FDML wavelength swept laser," Opt. Express 16, 16552-16560 (2008).
13 T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. W. van der Steen, R. Huber, and G. van Soest, "Intravascular optical coherence tomography imaging at 3200 frames per second," Opt. Lett. 38, 1715-1717 (2013).   DOI
14 K. H. Y. Cheng, B. A. Standish, V. X. D. Yang, K. Y. Cheung, X. Gu, E. Y. Lam, and K. K. Y. Wong, "Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers," Opt. Express 18, 1909-1915 (2010).   DOI
15 W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, "400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging," Opt. Lett. 35, 2919-2921 (2010).   DOI   ScienceOn
16 J. Xu, H. Ou, X. Wang, P. C. Chui, H. Y. Tam, and K. K. Y. Wong, "In vivo OCT imaging based on La-codoped Bismuth-based Erbium-doped fiber," IEEE Photon. Technol. Lett. 25, 1741-1743 (2013).   DOI   ScienceOn
17 F. D. Nielsen, L. Thrane, J. Black, K. Hsu, A. Bjarklev, and P. E. Andersen, "Swept-wavelength sources for optical coherence tomography in the 1 um range," Proc. SPIE 5861, 632975 (2005).
18 E. J. Jung, H. S. Lee, J. S. Park, M. Y. Jeong, and C. S. Kim, "Novel wavelength-swept Raman laser for arbitrary gain band OCT," Proc. SPIE 7168, 716823 (2009).
19 H. S. Lee, E. J. Jung, M. Y. Jung, and C. S. Kim, "Broadband wavelength-swept Raman laser for Fourier-domain mode locked swept-source OCT," J. Opt. Soc. Korea 13, 316-320 (2009).   DOI   ScienceOn
20 T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, "Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography," Opt. Lett. 33, 2815-2817 (2008).   DOI   ScienceOn
21 J. Xu, H. Ou, X. Xu, V. X. D. Yang, P. C. Chui, and K. K. Y. Wong, "Wideband Raman-pumped wavelength-swept laser for optical coherence tomography application," Appl. Phys. Express 6, 062701 (2013).   DOI
22 J. S. Park, M. Y. Jeong, and C. S. Kim, "Post-tuning of sample position in common-path swept-source optical coherence tomography," J. Opt. Soc. Korea 15, 380-385 (2011).   DOI   ScienceOn