• Title/Summary/Keyword: optical transmission system

Search Result 626, Processing Time 0.023 seconds

Development of Optical Signal Transmission for the KSTAR Project Pertaining to Instrumentation and Control of the Neutral Beam Test Stand at KAERI

  • Jung, Ki-Sok;Oh, Byung-Hoon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.289-295
    • /
    • 2005
  • Instrumentation and Control (I&C) of the Neutral Beam Test Stand (NB- TS) Facility at the Korea Atomic Energy Research Institute (KAERI) for the Korea Superconducting Tokamak Advanced Research (KSTAR) project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. Optical signal transmission constitutes a significant portion of I&C works and has been performed for the entirety of the project. During the NB- TS construction and related experiments, significant achievements to a more accurate as well as more refined optical signal transmissions have been made. Examples of those I&C works that utilized the optical signal transmission are the Langmuir probe signal transmission, gradient grid current signal transmission, gas flow control and signal transmission, ion source temperature measurement, beam line component temperature monitoring, and coolant flow signal transmission, etc. These optical signal transition provisions are now performing part of the indispensable functions for the proper operation of the NB- TS facility. Attained experience and expertise are expected to be well applied to the upcoming main neutral beam injection (NBI) system construction for the KSTAR project.

Reframing Design of the 10Gbps Optical Transmission System (10Gbps 광전송 장치의 리프레이밍을 위한 회로구현)

  • Kim, Sang-Kon;Eu, Jai-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.9-14
    • /
    • 1999
  • In this paper, a method of one line transmission of 622Mbps to interface a low speed part with a high speed part is introduced instead of H-BUS method of the 10 line transmission of 77.76Mbps in the 10Gbps optical transmission system. For this method, a reframing method to align the received data of 622Mbps transmission to STM(Synchronous Transfer Mode)-64 frame of SDH(Synchronous Digital Hierarchy) is described. Reframing is designed with VHDL and applied in the 10G-S4 ASIC of T14U board of 10Gbps optical transmission system.

  • PDF

Study on the Image and Digital Signal Transmission using Optical SCM (광 SCM을 이용한 영상 및 디지틀 신호 전송에 관한 연구)

  • Park, Yang-Ha;Kim, Kwan-Ho;Lee, Won-Tae;Lee, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1281-1283
    • /
    • 1995
  • In this paper, we develop a prototype of the Optical SCM transmission module. This module is possible to application to electric facilities for control and measurements. Transmission channel number is two channels, namely, image and digital signal. In the image transmission, modulation method is AM, baseband signal is NTSC video signal and demodulation use PLL. Modulation of digital signal is QPSK, 1.544Mbps and demodulation use PLL. First, we calculate theoretical analysis about RF and Optical link in the transmission. This calculation is well correspond with practical system and transmission experiment is excellent, but this is only two channel model. And now, we plan to multichannel transmission to measure intermodulation, frequency assignments and optimal channel numbers et al.

  • PDF

Optimization of Net Residual Dispersion and Launching Power Depend on Total Transmission Length and Span Length in Optical Transmission Links with Dispersion Management and Optical Phase Conjugation (분산 제어와 광 위상 공액이 적용된 광전송 링크에서 총 전송 거리와 중계 간격에 따른 전체 잉여 분산과 입사 전력의 최적화)

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1433-1441
    • /
    • 2011
  • Design rules of optical transmission links with dispersion management (DM) and optical phase conjugation (OPC) for compensating optical signal distortion due to chromatic dispersion and self phase modulation (SPM) of single mode fiber (SMF) are investigated in this paper. Design rules consist of optimal net residual dispersion (NRD) and optimal range of launching power of wavelength division multiplexed (WDM) channels as a function of total transmission length and span length. In all considered total transmission length and span length, optimal NRD are obtained to +10 ps/nm and -10 ps/mn for transmission links, which is controlled by precompensation and postcompensation, respectively. It is confirmed that system performances are more improved and effective NRD for wide launching power have wider range as total transmission length and span length are more decreased.

System Performance Improvements in WDM ($24{\times}40$ Gbps) Transmission using Optical Phase Conjugator and Dispersion Management (WDM ($24{\times}40$ Gbps) 전송에서 광 위상 공액기와 분산 제어를 이용한 시스템 성능 개선)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.855-864
    • /
    • 2008
  • Optical link techniques compensating chromatic dispersion and nonlinear effects, which affect distortion of optical signals, generated in single mode fiber are investigated through computer simulation and design rule of these link techniques is proposed for implementation of wideband and long-haul WDM ($24{\times}40$ Gbps) transmission system. The optical link consist of dispersion management (DM) compensating the cumulated dispersion through total transmission line and optical phase conjugation in middle of total transmission line for compensating distorted signals by frequency inversion. DM schemes considered in this research are lumped DM and inline DM. It is confirmed that eye opening penalty (EOP) of overall WDM channels are more improved than those in WDM transmission systems with only optical phase conjugator (OPC), if DM is additionally applied to these systems. And, design rule in both DM schemes are proposed by using effective residual dispersion range. It is confirmed that inline DM is better than lumped DM in the improving EOP of total WDM channels and in effective residual dispersion range.

Transmission Characteristics of Indoor Infrared Diffuse Links Employing Three-Beam Optical Transmitters and Non-Imaging Receivers

  • Wang, Zan;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1251-1260
    • /
    • 2008
  • Diffuse wireless optical communication offers more robust optical links in terms of coverage and shadowing than line-of-sight links. However, traditional diffuse wireless infrared (IR) transceiver systems are more susceptible to multi-path distortion and great power decrease, which results in limiting high-speed performance. Multi-beam is an effective technique to compensate for multi-path distortion in a wireless infrared environment. The goal of this paper is to analyze the transmission characteristics by replacing traditional diffuse system (TDS) which contains single wide angle transmitter and single element receiver by system consisting of three-beam transmitter and non-imaging receiver (TNS) attached with compound parabolic concentrator (CPC). In the simulation, we use the recursive model developed by Barry and Kahn and build the scenario based on 10 different cases which have been listed in Table 1. Moreover, we also check the reliability of the TNS diffuse link channel by BER test on the basis of different receiver positions and room sizes. The simulation results not only show the basic transmission characteristics of TNS diffuse link, but also are references to design more efficient and reliable indoor infrared transmission systems.

Suppression of Stimulated Brillouin Scattering Effect in Optical Transmission System (광섬유에 유도되는 stimulated Brillouin scattering 현상이 광전송시스템에 미치는 영향 측정 및 제거)

  • 김향균;이창희;한정희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.60-65
    • /
    • 1996
  • Degradation of the optical communication system due to the stimulated Brillouin scattering effect in the optical fiber is measured, and its suppression is demonstrated. In the externally modulated 2.5 Gb/s transmission experiment, bit error rate is increased due to the stimulated Brillouin scattering effect when the signal power (linewidth 3 MHz) incident into the dispersion shifted fiber is larger than 10 dBm. SBS effect is suppressed completely, up to 15 dBm of transmission power, by broadening the source linewidth to 200 MHz.

  • PDF

Generalized Analysis on the Combined Effect of SPM and Fiber Chromatic Dispersion on Subcarrier Multiplexed Optical Transmission Systems for RoF Applications

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

A Study on the moving picture transmission method between the accident sites and control center (사고현장과 사령실간 화상전송기술에 관한 연구(III))

  • Cho B. K.;Chang S. G.;Choi K. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1412-1414
    • /
    • 2004
  • Railway takes an important role of transporting massive passenger and freight. Accidents which occur related to trains have a risk of serious loss of lives, so those accidents need to be controlled urgently. Therefore moving picture transmission system is required which transmits exact information of moving picture of accident status to CTC and also communication line is also required with it. By using WTB line as a wayside transmission line, railway telephones, fax and train service information are provided to local offices. As transmission line improving project, optical cabling work is being processed by phases. Therefore optical fiber line is more effective way for a communicating way between stations than coaxial transmission line. This paper consider's connecting method when optical fibers is used for moving picture data transmission of train accidents and its problems.

  • PDF

Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum

  • Reza, Ahmed Galib;Rhee, June-Koo Kevin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Terabit-per-second (Tb/s) transmission capacity for the next generation of long-haul communication networks can be achieved using multicarrier optical super-channel technology. In an elastic orthogonal frequency division multiplexing (OFDM) super-channel transmission system, demultiplexing a portion of an entire spectrum in the form of a subband with minimum power is critically required. A major obstacle to achieving this goal is the analog-to-digital converter (ADC), which is power-hungry and extremely expensive. Without a proper ADC that can work with low power, it is unrealistic to design a 100G coherent receiver suitable for a commercially deployable optical network. Discrete Fourier transform (DFT) is often seen as a primary technique for understanding partial demultiplexing, which can be attained either optically or electronically. If fairly comparable performance can be achieved with an all-optical DFT circuit, then a solution independent of data rate and modulation format can be obtained. In this paper, we investigate two distinct OFDM super-channel receiver models, based on electronic and all-optical DFT-technologies, for partial carrier demultiplexing in a multi-Tb/s transmission system. The performance comparison of the receivers is discussed in terms of bit-error-rate (BER) performance.