• Title/Summary/Keyword: optical system design

Search Result 1,347, Processing Time 0.029 seconds

KrF 엑시머 레이저를 이용한 웨이퍼 스텝퍼의 제작 및 성능분석

  • 이종현;최부연;김도훈;장원익;이용일;이진효
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • This paper describes the design and development of a KrF excimer laser stepper and discusses the detailed system parameters and characterization data obtained from the performance test. We have developed a deep UV step-and-repeat system, operating at 248 nm, by retrofitting a commercial modules such as KrF excimer laser, precision wafer stage and fused silica illumination and 5X projection optics of numerical aperture 0.42. What we have developed, to the basic structure, are wafer alignment optics, reticle alignment system, autofocusing/leveling mechanisms and environment chamber. Finally, all these subsystem were integrated under the control of microprocessor-based controllers and computer. The wafer alignment system comprises the OFF-AXIS and the TTL alignment. The OFF-AXIS alignment system was realized with two kinds of optics. One is the magnification system with the image processing technique and the other is He-Ne laser diffraction type system using the alignment grating on the wafer. 'The TTL alignment system employs a dual beam inteferometric method, which takes advantages of higher diffraction efficiency compared with other TTL type alignment systems. As the results, alignment accuracy for OFF-AXIS and TTL alignment system were obtained within 0.1 $\mu\textrm{m}$/ 3 $\sigma$ for the various substrate on the wafers. The wafer focusing and leveling system is modified version of the conventional systems using position sensitive detectors (PSD). This type of detection method showed focusing and leveling accuracies of about $\pm$ 0.1 $\mu\textrm{m}$ and $\pm$ 0.5 arcsec, respectively. From the CD measurement, we obtained 0.4 $\mu\textrm{m}$ resolution features over the full field with routine use, and 0.3 $\mu\textrm{m}$ resolution was attainable under more strict conditions.

  • PDF

Implant Isolation Characteristics for 1.25 Gbps Monolithic Integrated Bi-Directional Optoelectronic SoC (1.25 Gbps 단일집적 양방향 광전 SoC를 위한 임플란트 절연 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.52-59
    • /
    • 2007
  • In this paper, we analyzed and measured implant isolation characteristics for a 1.25 Gbps monolithic integrated hi-directional (M-BiDi) optoelectronic system-on-a-chip, which is a key component to constitute gigabit passive optical networks (PONs) for a fiber-to-the-home (FTTH). Also, we derived an equivalent circuit of the implant structure under various DC bias conditions. The 1.25 Gbps M-BiDi transmit-receive SoC consists of a laser diode with a monitor photodiode as a transmitter and a digital photodiode as a digital data receiver on the same InP wafer According to IEEE 802.3ah and ITU-T G.983.3 standards, a receiver sensitivity of the digital receiver has to satisfy under -24 dBm @ BER=10-12. Therefore, the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysed and measured results of the implant structure, the M-BiDi SoC with the implant area of 20 mm width and more than 200 mm distance between the laser diode and monitor photodiode, and between the monitor photodiode and digital photodiode, satisfies the electrical crosstalk level. These implant characteristics can be used for the design and fabrication of an optoelectronic SoC design, and expended to a mixed-mode SoC field.

An Optimization Model and Heuristic Algorithms for Multi-Ring Design in Fiber-Optic Networks (광전송망에서의 다중링 설계를 위한 최적화 모형 및 휴리스틱 알고리즘)

  • 이인행;이영옥;정순기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.15-30
    • /
    • 2000
  • The important considerations in the design of fiber-optic networks are reliability and survivability preparing against a failure. The SDH(Synchronous Digital Hierarchy), the international standard of optical transmission, offers several network reconfiguration methods that enable network to be automatically restored from failure. One of the methods is the SHR(Self Healing Ring), which is a ring topology system. Most network providers have constructed their backbone networks with SHR architecture since it can provide survivability economically. The network architecture has eventually evolved into a multi-ring network comprised of interconnected rings. This paper addresses multi-ring network design problems is to minimize ring-construction cost. This problem can be formulated with MIP(mixed integer programming) model. However, it is difficult to solve the model within reasonable computing time on a large scale network because the model is NP-complete. Furthermore, in practice we should consider the problem of routing demands on rings to minimize total cost. This routing problem involves multiplex bundling at the intermediate nodes. A family of heuristic algorithms is presented for this problem. These algorithms include gateway selection and routing of inter-ring demands as well as load balancing on single rings. The developed heuristic algorithms are applied to some network provider's regional and long-distance transmission networks. We show an example of ring design and compare it with another ring topology design. Finally, we analysis the effect bundling.

  • PDF

Improving Brightness for a Multi-projector Display Using Human Visual Properties (인간의 시각 특성을 사용한 Multi-Projector Display에서의 밝기 향상 방법)

  • Lee Hee-Won;Lee Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.512-518
    • /
    • 2006
  • Very large-area multi-projector display systems have wide applications since they provide immersible environments. The brightness of projectors in the system is different due to the design and aging of the bulbs, and optical properties of the projectors. Therefore it is imperative to match the brightness characteristics of projectors in the system. This issue has been addressed by many researchers. The state of the art solution considers characteristic of projector's brightness only. In this paper, we propose a method that takes into account brightness of projector as well as the dynamic range of the input image. We increase the dynamic range of the input image to utilize the maximum possible brightness of a projector while satisfying the spatial smoothness constraint. This achieves a seamless multi-display with dramatic brightness improvement.

Recent Advances in Nuclear Medicine Imaging Instrumentation (핵의학 영상기기의 최근 진보)

  • Jung, Jin-Ho;Choi, Yong;Hong, Key-Jo;Min, Byung-Jun;Hu, Wei;Kang, Ji-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.

A Study on Environmental Micro-Dust Level Detection and Remote Monitoring of Outdoor Facilities

  • Kim, Seung Kyun;Mariappan, Vinayagam;Cha, Jae Sang
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.63-69
    • /
    • 2020
  • The rapid development in modern industrialization pollutant the water and atmospheric air across the globe that have a major impact on the human and livings health. In worldwide, every country government increasing the importance to improve the outdoor air pollution monitoring and control to provide quality of life and prevent the citizens and livings life from hazard disease. We proposed the environmental dust level detection method for outdoor facilities using sensor fusion technology to measure precise micro-dust level and monitor in realtime. In this proposed approach use the camera sensor and commercial dust level sensor data to predict the micro-dust level with data fusion method. The camera sensor based dust level detection uses the optical flow based machine learning method to detect the dust level and then fused with commercial dust level sensor data to predict the precise micro-dust level of the outdoor facilities and send the dust level informations to the outdoor air pollution monitoring system. The proposed method implemented on raspberry pi based open-source hardware with Internet-of-Things (IoT) framework and evaluated the performance of the system in realtime. The experimental results confirm that the proposed micro-dust level detection is precise and reliable in sensing the air dust and pollution, which helps to indicate the change in the air pollution more precisely than the commercial sensor based method in some extent.

Development and Performance Test of Solar Sail System for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 태양돛 개발 및 성능시험)

  • Song, Su-A;Kim, Seungkeun;Suk, Jinyoung;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.228-239
    • /
    • 2016
  • CNUSAIL-1 is a 3U-sized cube satellite with $4m^2$ small solar sail which is currently being developed at the Chungnam National University. The primary purpose of the CNUSAIL-1 is successful sail deployment in LEO and its operation for investigating its effect on satellite orbit and attitude as well as performing de-orbiting using the sail membranes as drag sail at the final phase. The system design and mechanism of solar sail deployment is introduced, and optical and tensile tests are carried out for the material of membranes and booms for its safety and performance verification. The ground test is carried out to verify its performance for sail deployment and satellite through comparison between folding methods by determining its folding patterns, thickness of spiral spring and angular velocity measurement in a low-friction environment.

Fabrication Measurement and Evaluation of a Parabolic Mirror with the Diameter of 450 mm(f/2.7) by Autostigmatic Null Lens System (자동무수차점 방식 널 렌즈 광학계를 이용한 직경 450 mm(f/2.7) 포물면경의 제작 및 측정 평가)

  • Lee, Young-Hun;Jo, Jae-Heung;Rim, Cheon-Seog;Lee, Yun-Woo;Yang, Ho-Soon;Lee, Jae-Hyeob;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.165-174
    • /
    • 2006
  • The autotstigmatic null lens system is designed and constructed for the fabrication of a parabolic mirror with the diameter of 450 mm(f/2.7). And the measurement reliability is also analyzed theoretically by means of the tolerancing technique using lens design software(CODE V). From this analysis, we can precisely fabricate a parabolic mirror with the large diameter of 450 mm(f/2.7). Meanwhile, in order to confirm the fabrication results by the autostigmatic method, the mirror surface is tested again by an autocollimating method that uses only a plane mirror without any null lens.

Sensing Technologies for Grain Crop Yield Monitoring Systems: A Review

  • Chung, Sun-Ok;Choi, Moon-Chan;Lee, Kyu-Ho;Kim, Yong-Joo;Hong, Soon-Jung;Li, Minzan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.408-417
    • /
    • 2016
  • Purpose: Yield monitoring systems are an essential component of precision agriculture. They indicate the spatial variability of crop yield in fields, and have become an important factor in modern harvesters. The objective of this paper was to review research trends related to yield monitoring sensors for grain crops. Methods: The literature was reviewed for research on the major sensing components of grain yield monitoring systems. These major components included grain flow sensors, moisture content sensors, and cutting width sensors. Sensors were classified by sensing principle and type, and their performance was also reviewed. Results: The main targeted harvesting grain crops were rice, wheat, corn, barley, and grain sorghum. Grain flow sensors were classified into mass flow and volume flow methods. Mass flow sensors were mounted primarily at the clean grain elevator head or under the grain tank, and volume flow sensors were mounted at the head or in the middle of the elevator. Mass flow methods used weighing, force impact, and radiometric approaches, some of which resulted in measurement error levels lower than 5% ($R^2=0.99$). Volume flow methods included paddle wheel type and optical type, and in the best cases produced error levels lower than 3%. Grain moisture content sensing was in many cases achieved using capacitive modules. In some cases, errors were lower than 1%. Cutting width was measured by ultrasonic distance sensors mounted at both sides of the header dividers, and the errors were in some cases lower than 5%. Conclusions: The design and fabrication of an integrated yield monitoring system for a target crop would be affected by the selection of a sensing approach, as well as the layout and mounting of the sensors. For accurate estimation of yield, signal processing and correction measures should be also implemented.

Embedded System Design of Automotive Media Server Platform with the MOST Interface (MOST 인터페이스를 갖는 차량용 미디어 서버 플랫폼에 대한 임베디드 시스템 설계)

  • Kwak, Jae-Min;Park, Pu-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • For growing need for the multimedia application in the vehicles, the MOST protocol has been focused on. The MOST protocol supports three kinds of communication modes; short control message, asynchronous packets, and reserved synchronous stream data. Because of a variety of transportation, the MOST is suitable for various applications in vehicle environment. In this paper, we implemented embedded system which is MOST-enabled AMS platform and tested the network communication operation through the control port and the synchronous channel of the source port. We implemented the prototype platforms which communicate each other on the MOST's POF network. Moreover we implemented the DivX decoder attached AMS platform and verified the operation by transferring the video stream and the control messages through the MOST network.

  • PDF