• Title/Summary/Keyword: optical shutter

Search Result 50, Processing Time 0.025 seconds

A Study on Characteristics of Liquid-Crystal Based Cell for Smart Window (액정 기반 스마트 윈도우용 셀의 특성 연구)

  • Park, Byung-Gyu;Kim, Sun-Keum;Lee, Seung-Woo;So, Soon-Yeol;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.271-275
    • /
    • 2020
  • Smart windows are used as windows and doors to determine the cooling and heating efficiency of a building. They have characteristics that can increase the energy efficiency of a building, which leads to energy savings. In addition, smart windows can control the amount of light transmitted from the external environment of a building to the interior of a building according to the needs of the user. In this study, a 297×210 ㎟ liquid crystal cell capable of controlling light transmittance was fabricated using a liquid crystal device as an optical shutter. The effect of driving voltage on the transmittance and the effect of the thermal environment on the driving stability were analyzed. We confirmed the applicability of using smart windows as exterior building materials.

Optimization of Thermo-optical Property for Electrostatic Actuating MEMS-based Variable Emissivity Radiator (정전 구동형 MEMS 기반 가변 방사율 라디에이터의 광학 물성치 최적화 설계)

  • Ha, Heon-Woo;Kang, Soo-Jin;Han, Sung-Hyeon;Kim, Tae-Gyu;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.149-155
    • /
    • 2015
  • MEMS-based louver and shutter type conventional variable emissivity radiators change their emissivity properties in accordance with a temperature condition to achieve efficient thermal control performance. However, there are some drawbacks such as a structural safety of the mechanical moving parts under sever launch environment and constant power consumption to maintain the intended emissivity. In this study, to overcome above drawbacks, we proposed a MEMS-based variable emissivity radiator, which can change the emissivity property according to the polarity change of electrodes by using electric charge of the bead. The effectiveness of the optimized radiator design has been demonstrated through the comparison of efficiency with the fixed emissivity radiator.

A study on the characteristic of Pockel cell Q-switch for Nd:YAG laser (Nd:YAG Laser를 위한 포켓셀 Q-스위치특성 연구)

  • Kim, Whi-Young
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.199-207
    • /
    • 2009
  • The Q-switching the shutter or the different optical science element puts in within the laser light resonator and the storehouse departs from the within the resonator it loses the mortar and the reversal distribution which when is sufficient creates from within the active medium, opens the shutter instantaneously and it is to do to be made to emit with the light where the energy which is accumulated within the resonator is strong very. Like this Q-switching of laser resonator--It decreases factor increasing suddenly to make. To method of Laser Q-switching mechanical switching methods, electro-optic switching methods and switching by saturable absorber methods, acousto-optic switching method etc. 4 kind are being used on a large scale. In these people the conversion which is electric in compliance with the effect which is electrooptics is widely being used the Q-switching pulse of short pulse width because being it will be able to create. Consequently, Pockel cell where it has the quality of electrooptics effect) the Q-it is become known that it is suitable it uses with switch. From the research which it sees FET and one-chip microprocessor where it is a switching element and pulse transfomer to plan and produce pockel cell Q-switch driving gears, pulse style Nd: It applied in YAG Laser system and it investigated and researched the operating characteristic of the Q-switch. Also, the Q-switch leads and Nd where it is output: YAG with forecast in compliance with a theoretical calculation it comes to buy laser beam side politics it compared and laser beam qualities which had become Q-switching it analyzed.

  • PDF

Region-adaptive Smear Removal Method Using Optical Black Region for CCD Sensors (광학암흑영역을 이용한 CCD 센서의 영역 적응적 스미어 제거 방식)

  • Han, Young-Seok;Song, Ki-Sun;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.107-116
    • /
    • 2010
  • Smear is a phenomenon that occurs when an extremely strong light source appears in the imaging system with CCD sensor. It occurs due to the signal charge transfer of CCD and appears as bright lines of noise emanating vertically (or horizontally) from the light source. For still images, smear can be reduced by using a mechanical shutter or special drive methods, but these techniques cannot be applied to image sequences. In this paper, we propose a smear removal method that can be applied to imaging systems for not only still images but also image sequences. The proposed method uses the optical black region(OBR) which is a group of pixels located in the boundary of CCD imaging sensors. Although the OBR is not exposed to light, it contains smear information caused by the charge transport. First, noise and the smear signal in the OBR is separated, and noise is removed to correctly estimate smear effect. Then, corrected OBR signal is uniformly subtracted to eliminate smear effect. Also, if saturation is occurred, the current pixel is substituted by weighted summation of neighboring pixels to improve the visual degradation. Experimental results show that the proposed algorithm outperforms the conventional methods.

Three-Dimensional Image Display System using Stereogram and Holographic Optical Memory Techniques (스테레오그램과 홀로그래픽 광 메모리 기술을 이용한 3차원 영상 표현 시스템)

  • 김철수;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.638-644
    • /
    • 2002
  • In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH(binary phase hologram) and LCD(liquid crystal display) for controlling reference beam. The reference beams are acquired by Fourier transform of BPHs which designed with SA(simulated annealing)algorithm, and the BPHs are represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software(Photoshop) with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. In output plane, we used a LCD shutter that is synchronized to a monitor that display alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO$_3$ repeatedly using the proposed holographic optical memory techniques.

Stereoscopic Camera with a CCD and Two Zoom Lenses (단일 CCD와 두개의 줌렌즈로 구성한 입체 카메라)

  • Lee, Sang-Eun;Jo, Jae-Heung;Jung, Eui-Min;Lee, Kag-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The stereoscopic camera based on the image formation principle on human eyes and the brain is designed and fabricated by using a CCD and two zoom lenses. As two zoom lenses are separated as 65 mm of the human ocular distance with the wide angle of view of $50^{\circ}$ and the variable convergence angle from $0^{\circ}$ to $16^{\circ}$, the camera can be operated by the similar binocular parallax as human eyes. In order to take the dynamic stereoscopic picture, a shutter blade for the selection of the left and right images in turns, an X-cube image combiner fur the composition of these two images through the blade, and a CCD with 60 frames per second are used.

Design and Tolerance Analysis of 3-D Stereoscopic Display Modules with Alternating Illumination Angles (조명각 변조 방식의 3차원 입체영상 표시장치설계 및 공차분석)

  • Jeong, Woo-Chul;Ha, Sang-Woo;Park, Hun-Yang;O, Beom-Hwan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol;Park, Sun-Ryoung;Jo, Sung-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In order to realize a 3-D stereoscopic display module with alternating illumination angles, several conditions required for a lenticular lens sheet were established, and then both the lens specification and the module structure were designed. Also the performance of the stereoscopic module and its tolerance characteristics were evaluated by simulating the intensity distribution on the observation plane with a finite-ray tracing technique. From the evaluation, it was known that an intersection area between two adjacent lenses should not be filled and that the lateral mismatch between a planar liquid crystal shutter and a lens sheet should be minimized.

A Study of Temperature Changes in the Dental Tissues Irradiated by $10.6{\mu}m$ Laser Beam ($CO_2$ 레이저 광의 조사조건에 따른 치아의 치수강내 온도상승에 관한 연구)

  • Ko, D. S.;Bak, Y. H.;Shin, S. H.;Eom, H. S.;Kim, U.;Lee, C. Y.
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.210-216
    • /
    • 1990
  • This study was performed to obtain fundamental data on temperature increases in the dental tissues irradiated by IO.opm laser radiation. For this purpose a experimental facility was established. which was composed of a CO2 laser. a shutter unit and a temperature sensing device. The temperature changes in the pulp chamber of extracted molars. during and after the laser irradiation. were measured as function of laser power. the time of irradration and the thickness of the sample. An empirical formula for the maximum temperature increases, $\DeltaT_m$ was derived from the measured data as follows; $\DeltaT_m=\alphaP\Delta\tauexp(-\betad)$$ where P. $\Delta\tau$ and d are the laser power(W). irradiation time{sec) and the thickness(mm) between pulp chamber and occlusal surface. respectively. Also a theoretical calculation model based on simplified assumptions were established and the results from the calculation were compared with the measured temperature data. A fairly good agreement was obtained.obtained.

  • PDF

Delayed Luminescence Characteristics of Human Hands (사람 손의 지연발광 특성)

  • Yang, Joon-Mo;Choi, Chun-Ho;Soh, Kwang-Sup;Lim, Woo-Taek;Lee, Han-Sang;Chae, Seung-Byung;Yoon, Se-Yeol;Lee, Kyung-Il;Shin, Eun-Seok;Choi, Sun-Mi
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Delayed luminescence from human hands after illumination by light at different wavelength bands was studied. A delayed luminescence measurement system equipped with photomultiplier tube (PMT), fiber optics and automatic mechanical shutter system was developed. Three spectrum band-pass filters, fer which transmissions are on 350${\~}$450 nm, 450${\~}$550 nm and 550${\~}$650 nm, were used to select irradiation wavelength, and 150W metal-halide lamp was used as an illumination source. Six volunteers put their palms (dorsa) onto the measurement system, and after light illumination, delayed luminescence were measured for 10 minutes. The results show that delayed luminescence after shorter wavelength illumination was higher than that a(ter longer wavelength one. These results indicate the existence of accepters in human skin which can be excited at short wavelengths. Furthermore, each subjects showed different delayed luminescence curve patterns. Reactive oxygen species (ROS) are known to have important roles on delayed luminescence, and this research suggests that ROS concentration can be measured noninvasively with optical methods.

Development of the IRIS Collimator for the Portable Radiation Detector and Its Performance Evaluation Using the MCNP Code (IRIS형 방사선검출기 콜리메이터 제작 및 MCNP 코드를 이용한 성능평가)

  • Ji, Young-Yong;Chung, Kun Ho;Lee, Wanno;Choi, Sang-Do;Kim, Change-Jong;Kang, Mun Ja;Park, Sang Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • When a radiation detector is applied to the measurement of the radioactivity of high-level of radioactive materials or the rapid response to the nuclear accident, several collimators with the different inner radii should be prepared according to the level of dose rate. This makes the in-situ measurement impractical, because of the heavy weight of the collimator. In this study, an IRIS collimator was developed so as to have a function of controlling the inner radius, with the same method used in optical camera, to vary the attenuation ratio of radiation. The shutter was made to have the double tungsten layers with different phase angles to prevent the radiation from penetrating owing to the mechanical tolerance. The performance evaluation through the MCNP code was conducted by calculating the attenuation ratio according to the inner radius of the collimator. The attenuation ratio was marked on the outer scale ring of the collimator. It is expected that when a radiation detector with the IRIS collimator is used for the in-situ measurement, it can change the attenuation ratio of the incident photon to the detector without replacing the collimator.