DOI QR코드

DOI QR Code

Optimization of Thermo-optical Property for Electrostatic Actuating MEMS-based Variable Emissivity Radiator

정전 구동형 MEMS 기반 가변 방사율 라디에이터의 광학 물성치 최적화 설계

  • Ha, Heon-Woo (Department of Aerospace Engineering, Chosun University) ;
  • Kang, Soo-Jin (Department of Aerospace Engineering, Chosun University) ;
  • Han, Sung-Hyeon (Department of Aerospace Engineering, Chosun University) ;
  • Kim, Tae-Gyu (Department of Aerospace Engineering, Chosun University) ;
  • Oh, Hyun-Ung (Department of Aerospace Engineering, Chosun University)
  • Received : 2014.11.04
  • Accepted : 2015.01.23
  • Published : 2015.02.01

Abstract

MEMS-based louver and shutter type conventional variable emissivity radiators change their emissivity properties in accordance with a temperature condition to achieve efficient thermal control performance. However, there are some drawbacks such as a structural safety of the mechanical moving parts under sever launch environment and constant power consumption to maintain the intended emissivity. In this study, to overcome above drawbacks, we proposed a MEMS-based variable emissivity radiator, which can change the emissivity property according to the polarity change of electrodes by using electric charge of the bead. The effectiveness of the optimized radiator design has been demonstrated through the comparison of efficiency with the fixed emissivity radiator.

기존의 MEMS 기반 루버 및 셔터 개폐형 가변 방사율 라디에이터는 온도 조건에 따라 방사율이 가변되어 효율적인 열 제어가 가능하나 발사 환경에서의 기계적 구동부의 취약점과 변경된 방사율 유지를 위해 지속적인 전력 소모가 요구되는 단점을 갖는다. 본 연구에서 제안한 MEMS 기반 가변 방사율 라디에이터는 대전되는 비드를 사용하여 전극의 극성 변화에 따라 방사율 가변이 가능하기 때문에 상기의 문제점을 극복할 수 있다. 본 연구에서는 MEMS 기반 가변 방사율 라디에이터의 광학 물성치 최적화 설계를 수행하였으며, 고정 방사율 라디에이터와의 비교를 통해 MEMS 기반 가변 방사율 라디에이터의 유효성을 입증하였다.

Keywords

References

  1. S. M. Shin, H. U. Oh, "Thermal Design and Analysis for Space Imaging Sensor on LEO", Journal of the Korean Society for Aeronautical & Space Sciences, 2011, Vol. 39, No. 5, pp. 474-480 https://doi.org/10.5139/JKSAS.2011.39.4.474
  2. K. Shimazaki, S. Tachikawa, A. Ohnishi, Y. Nagasaka, "Temperature Dependence of Total Hemispherical Emittance in Perovskitetype Manganese Oxides, $La_{1-x}Sr_{x}MnO_{3}$", High Temperature-High Pressures, 2001, Vol. 33, pp. 525-531 https://doi.org/10.1068/htwu129
  3. K. Shimazaki, A. Ohnishi, Y. Nagasaka, "Development of Spectral Selective Multilayer Film for a Variable Emittance Device and Its Radiation Properties Measurements", International Journal of Thermophysics, 2003, Vol. 24, pp. 757-769 https://doi.org/10.1023/A:1024044417708
  4. S. W. Han, B. S. Choi, T. H Song, S. J Kim, B. J Lee, "Experimental Investigation on Variable Emittance Material Based on $(La, Sr)MnO_3$", Journal of The Korean Society of Mechanical Engineers, Vol. 37, No. 6, 2013, pp. 583-590 https://doi.org/10.3795/KSME-B.2013.37.6.583
  5. D. Farra, W. Schneider, R. Osiander, J.L. Champion, M.A.G. Darrin, D. Douglas, T.D. Swanson, "Controlling Variable Emittance (MEMS) Coating for Space Applications", Inter Society Conference on Thermal Phenomena, 2002, Vol. 8, pp. 1020-1024
  6. R. Osiander, S.L. Firebaugh, J.L. Champion, D. Farra, M.A.G. Darrin, "Microelectromechanical Device for Satellite Thermal Control", IEEE Sensors Journal, 2004, Vol. 4, No. 4, pp. 525-530 https://doi.org/10.1109/JSEN.2004.830297
  7. C. U. Lee, H. W. Ha, H. U. Oh, T. K. Kim, "Experimental Validation of MEMS-based Variable Emissivity Radiator for Space Applications", Journal of The Korean MEMS Conference, 2014
  8. D. Panczak, G. Ring, J. Welch, D. Johnson, P. Bell, "Sinda/Fluint Thermal Desktop User's Manual", C&R Technology, 2008
  9. V. V. Vlassov, F. L. Sousa, A. P. C. Cuco, A. J. S. Neto, "New Concept of Space Radiator with Variable Emittance", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 32, No. 4, 2010, pp. 400-408 https://doi.org/10.1590/S1678-58782010000400001
  10. M. Darrin, R. Osiander, J. Lehtonen, D. Farrar, "Novel Micro ElectroMechanical System (MEMS) Packaging for the Skin of the Satellite", 2004 IEEE Aerospace Conference, 2004