• Title/Summary/Keyword: optical sensitivity

Search Result 870, Processing Time 0.027 seconds

RF Plasma Processes Monitoring for Fluorocarbon Polluted Plasma Chamber Cleaning by Optical Emission Spectroscopy and Multivariate Analysis (Optical Emission Spectra 신호와 다변량분석기법을 통한 Fluorocarbon에 의해 오염된 반응기의 RF 플라즈마 세정공정 진단)

  • Jang, Hae-Gyu;Lee, Hak-Seung;Chae, Hui-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.242-243
    • /
    • 2015
  • Fault detection using optical emission spectra with modified K-means cluster analysis and principal component anal ysis are demonstrated for inductive coupl ed pl asma cl eaning processes. The optical emission spectra from optical emission spectroscopy (OES) are used for measurement. Furthermore, Principal component analysis and K-means cluster analysis algorithm is modified and applied to real-time detection and sensitivity enhancement for fluorocarbon cleaning processes. The proposed techniques show clear improvement of sensitivity and significant noise reduction when they are compared with single wavelength signals measured by OES. These techniques are expected to be applied to various plasma monitoring applications including fault detections as well as chamber cleaning endpoint detection.

  • PDF

Analysis of a Photonic Crystal Fiber Sensor with Reuleaux Triangle

  • Bing, Pibin;Huang, Shichao;Guo, Xinyue;Zhang, Hongtao;Tan, Lian;Li, Zhongyang;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.199-203
    • /
    • 2019
  • The characteristics of a photonic crystal fiber sensor with reuleaux triangle are studied by using the finite element method. The wavelength sensitivity of the designed optical fiber sensor is related to the arc radius of the reuleaux triangle. Whether the core area is solid or liquid as well as the refractive index of the liquid core contributes to wavelength sensitivity. The simulation results show that larger arc radius leads to higher sensitivity. The sensitivity can be improved by introducing a liquid core, and higher wavelength sensitivity can be achieved with a lower refractive index liquid core. In addition, the specific channel plated with gold film is polished and then analyte is deposited on the film surface, in which case the position of the resonance peak is the same as that of the complete photonic crystal fiber with three analyte channels being filled with analyte. This means that filling process becomes convenient with equivalent performance of designed sensor. The maximum wavelength sensitivity of the sensor is 10200 nm/RIU and the resolution is $9.8{\times}10^{-6}RIU$.

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Joint Probability Density Functions for Direct-Detection Optical Receivers

  • Lee, Jae Seung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.124-128
    • /
    • 2014
  • We derive joint probability density functions (JPDFs) for two adjacent data from direct-detection optical receivers in dense wavelength-division multiplexing systems. We show that the decision using two data per bit can increase the receiver sensitivity compared with the conventional decision. Our JPDFs can be used for software-defined optical receivers enhancing the receiver sensitivities for intensity-modulated channels.

Receive Sensitivity Improvement of Wavelength Division Multiplexing System (파장 분할 다중화 시스템의 수신감도 개선)

  • Kim, Sun-Youb;Park, Hyoung-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.579-585
    • /
    • 2006
  • In this study, we analysis an optical receivers using the optical preamplifier in a spectrum-sliced WDM systems. The average numbers of photons/bit, for an $10^{-9}$ error probability, counts using the OOK and FSK transmission. As a result, the theoretical sensitivity for PIN receiver and optical preamplifier receiver are approximately $9.2\times10^4\;and\;7.2\times10^2$ in the m=20, respectively. Also, the average numbers of photons/bit, for and given error probability, theoretical receiver sensitivity for Gaussian method and k-square method are approximately $9\times10^2\;and\;2.16\times10^2$ in the m=40, respectively. And the average numbers of photons/bit, for an given error probability, theoretical receiver sensitivity, OOK and FSK transmission are approximately $1.9\times10^2\;and\;3.1\times10^2$ in the m=20, respectively.

Near-field Evaluation of Surface Plasmon Resonance Biosensor Sensitivity Based on the Overlap Between Field and Target Distribution (근접장-분자반응 간의 중첩을 이용한 표면 플라스몬 공명 센서 감도 평가에 관한 연구)

  • Ryu, Yeonsoo;Son, Taehwang;Kim, Donghyun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • In this study, we have investigated the correlation of far-field detection sensitivity of surface plasmon resonance (SPR) biosensors with optical signatures associated with the near-field overlap of biomolecules. The results confirm a direct relation between the far-field and near-field parameters, particularly for optical signatures defined in terms of lateral electric field components that are tangential to the interface and thus continuous across the interface. The overall correlation between near-field optical signatures and far-field resonance shift exceeded 97%. The results can be highly useful to evaluate detection sensitivity of SPR biosensors that take advantage of complex structures for localization of surface waves.

A Study on the Dip-pen Nanolithography Process and Fabrication of Optical Waveguide for the Application of Biosensor

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • Photonic crystal structures have been received considerable attention due to their high optical sensitivity. One of the techniques to construct their structure is the dip-pen lithography (DPN) process, which requires a nano-scale resolution and high reliability. In this paper, we propose a two dimensional photonic crystal array to improve the sensitivity of optical biosensor and DPN process to realize it. As a result of DPN patterning test, we have observed that the diffusion coefficient of the mercaptohexadecanoic acid (MHA) molecule ink in octanol is much larger than that in acetonitrile. In addition, we have designed and fabricated optical waveguides based on the mach-zehnder interferometer (MZI) for application to biosensors. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The MZI optical waveguides were measured of the optical characteristics for the application of biosensor.