• Title/Summary/Keyword: optical satellite

Search Result 737, Processing Time 0.041 seconds

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

Optical Noise Removal in the Focal Plane of the Spaceborne Camera

  • Park, Jun-Oh;Jang, Won-Kweon;Kim, Seong-Hui;Jang, Hong-Sul;Lee, Seung-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.278-282
    • /
    • 2011
  • We discuss two possible optical noise sources in an electro-optic camera loaded on a low earth orbit satellite. The first noise source was a reflection at the window for signal rays incident upon the window which is placed before the FPA plane. The second noise source came from a reflection at the surface of the FPA cell when the signal flux is not entirely absorbed. We investigate the noise generation processes for two optical noise sources, and a parametric solution is used to estimate the optical noise effects.

Performance Analysis of DPSK Optical Communication for LEO-to-Ground Relay Link Via a GEO Satellite

  • Lim, Hyung-Chul;Park, Jong Uk;Choi, Mansoo;Choi, Chul-Sung;Choi, Jae-Dong;Kim, Jongah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Satellite optical communication has gained significant attention owing to its many quality features (e.g., a larger bandwidth, license free spectrum, higher data rate, and better security) compared to satellite microwave communication. Various experiments have been performed during many space missions to demonstrate and characterize inter-satellite links, downlinks, and uplinks. Korea has also planned to establish an experimental communication system using a geostationary earth orbit (GEO) satellite and the Geochang station as an optical ground station for low Earth orbit (LEO)-to-ground optical relay links. In this study, the performance of inter-satellite communication links and downlinks was investigated for the new Korean experimental communication system in terms of link margin, bit error rate (BER), and channel capacity. In particular, the performance of the inter-satellite links was analyzed based on the receiving apertures and the transmitting power, while that of the downlink was analyzed in terms of atmospheric turbulence conditions and transmitting power. Finally, we discussed two system parameters of receiving aperture and transmitting power to meet the three criteria of link margin, BER, and channel capacity.

Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data

  • Shin, Bumjoon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.

지구관측위성 현황 조사

  • Shin, Jae-Min;Kim, Hee-Seob;Kim, Eung-Hyun;Im, Jung-Heum
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • On the basis of sensor types, satellites can be classified by two types, which are optical observation satellite and radar observation satellite. A satellite type is selected according to the specific mission. Optical observation satellite is more appropriate for getting high geometric resolution images and radar observation satellite is more appropriate for getting images independent of weather condition the more a demand of satellite increases, the more an importance of information increases. Therefore, development trend and state of earth observation satellite are surveyed and described in this paper. In the future, domestic development of satellites will be planned considering trend of satellite technologies.

  • PDF

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

The Optimum Design of Optical Heterodyne Receiver used on Optical Sate Ilite Communication under Turbulent Atmosphere (교란 대기하에서 광위성통신용 광헤테로다인 수신기 최적 설계에 관한 연구)

  • 한종석;정진호;김영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.4
    • /
    • pp.28-39
    • /
    • 1993
  • In the international BISDN used satellite, the laser that has large BW has to be used as a carrier for transmitting a lot of visual, vocal, and data information. Interoptical satellite communication has now developed in theoretical and practical aspects. But the optical communication, between satellite and earth station, is hindered by atmospheric absorption, scattering, and turbulence. In this paper, it was supposed that 1Gbps information was transmitted by binary FSK and 50mW AlGaAs semiconductor laser was used as a optical source in the satellite communication link between geosynchronous orbit satellite and earth station. We analyzed the BER and the entire diameter of the noncoherently combined optical heterodyne receiver as el evation angle, and determined the number of the optical heterodyne rece ivers, which is necessary for the BER of the receiver to be less than 10$^{-9}$ by computer simulation under the clear weather condition. It is shown that the BER and the number of the optical heterodyne receivers decrease as the elevation angle increases. In the region used the same number of the optical heterodyne receivers, it is shown that the entire diameter of the receiver increases but the BER decreases as the elevation angle increases.

  • PDF

The design of transmitting antenna on the optical satelite communication up-link in rain (광위성 통신시 업링크에서 강우에 따른 송신 안테나 설계)

  • 정진호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.75-82
    • /
    • 1997
  • Today's wireless communication needs the super-high speed for picture transmission as well as voice. The optical communication with the very wide bandwidth is suitable for this demand. To fulfill the optical wireless communication, however, the atmospheric attenuation in rainy weather condition must be overcome. In the optical satellite up-link communication between geo-satellite and earth station, the factors of attenuation are turbulence, pointing error, scattering, and so on. The most serious factor for these is the scattering by rain. Under the weather conditiion of rain and cloud, in this paper, the atmospheic attenuation which affects the optical satellite up-link communication was considered, and the optimum idameter of the optical satellite transmitting antenna in the earth station versus elevation angles, data rates and rainfall rates was presented.

  • PDF

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

Design of an Elliptical Orbit for High-Resolution Optical Observation at a Very Low Altitude over the Korean Peninsula

  • Dongwoo Kim;Taejin Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.35-44
    • /
    • 2023
  • Surveillance and reconnaissance intelligence in the space domain will become increasingly important in future battlefield environments. Moreover, to assimilate the military provocations and trends of hostile countries, imagery intelligence of the highest possible resolution is required. There are many methods for improving the resolution of optical satellites when observing the ground, such as designing satellite optical systems with a larger diameter and lowering the operating altitude. In this paper, we propose a method for improving ground observation resolution by using an optical system for a previously designed low orbit satellite and lowering the operating altitude of the satellite. When the altitude of a satellite is reduced in a circular orbit, a large amount of thrust fuel is required to maintain altitude because the satellite's altitude can decrease rapidly due to atmospheric drag. However, by using the critical inclination, which can fix the position of the perigee in an elliptical orbit to the observation area, the operating altitude of the satellite can be reduced using less fuel compared to a circular orbit. This method makes it possible to obtain a similar observational resolution of a medium-sized satellite with the same weight and volume as a small satellite. In addition, this method has the advantage of reducing development and launch costs to that of a small-sized satellite. As a result, we designed an elliptical orbit. The perigee of the orbit is 300 km, the apogee is 8,366.52 km, and the critical inclination is 116.56°. This orbit remains at its lowest altitude to the Korean peninsula constantly with much less orbit maintenance fuel compared to the 300 km circular orbit.