• Title/Summary/Keyword: optical motion capture

Search Result 39, Processing Time 0.025 seconds

The Examination of Reliability of Lower Limb Joint Angles with Free Software ImageJ

  • Kim, Heung Youl
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.583-595
    • /
    • 2015
  • Objective: The purpose of this study was to determine the reliability of lower limb joint angles computed with the software ImageJ during jumping movements. Background: Kinematics is the study of bodies in motion without regard to the forces or torques that may produce the motion. The most common method for collecting motion data uses an imaging and motion-caption system to record the 2D or 3D coordinates of markers attached to a moving object, followed by manual or automatic digitizing software. Above all, passive optical motion capture systems (e.g. Vicon system) have been regarded as the gold standards for collecting motion data. On the other hand, ImageJ is used widely for an image analysis as free software, and can collect the 2D coordinates of markers. Although much research has been carried out into the utilizations of the ImageJ software, little is known about their reliability. Method: Seven healthy female students participated as the subject in this study. Seventeen reflective markers were attached on the right and left lower limbs to measure two and three-dimensional joint angular motions. Jump performance was recorded by ten-vicon camera systems (250Hz) and one digital video camera (240Hz). The joint angles of the ankle and knee joints were calculated using 2D (ImageJ) and 3D (Vicon-MX) motion data, respectively. Results: Pearson's correlation coefficients between the two methods were calculated, and significance tests were conducted (${\alpha}=1%$). Correlation coefficients between the two were over 0.98. In Vicon-MX and ImageJ, there is no systematic error by examination of the validity using the Bland-Altman method, and all data are in the 95% limits of agreement. Conclusion: In this study, correlation coefficients are generally high, and the regression line is near the identical line. Therefore, it is considered that motion analysis using ImageJ is a useful tool for evaluation of human movements in various research areas. Application: This result can be utilized as a practical tool to analyze human performance in various fields.

Trajectory Rectification of Marker using Confidence Model (신뢰도 모델을 이용한 마커 궤적 재조정)

  • Ahn, Junghyun;Jang, Mijung;Wohn, Kwangyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.3
    • /
    • pp.17-23
    • /
    • 2002
  • Motion capture system is widely used nowadays in the entertainment industry like movies, computer games and broadcasting. This system consist of several high resolution and high speed CCD cameras and expensive frame grabbing hardware for image acquisition. KAIST VR laboratory focused on low cost system for a few years and have been developed a LAN based optical motion capture system. But, by using low cost system some problems like occlusion, noise and swapping of markers' trajectory can be occurred. And more labor intensive work is needed for post-processing process. In this thesis, we propose a trajectory rectification algorithm by confidence model of markers attached on actor. Confidence model is based on graph structure and consist of linkage, marker and frame confidence. To reduce the manual work in post-processing, we have to reconstruct the marker graph by maximizing the frame confidence.

  • PDF

Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition (손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.341-346
    • /
    • 2009
  • The motion data glove is a representative human-computer interaction tool that inputs human hand gestures to computers by measuring their motions. The motion data glove is essential equipment used for new computer technologiesincluding home automation, virtual reality, biometrics, motion capture. For its popular usage, this paper attempts to develop an inexpensive visual.type motion data glove that can be used without any special equipment. The proposed approach has the special feature; it can be developed as a low-cost one becauseof not using high-cost motion-sensing fibers that were used in the conventional approaches. That makes its easy production and popular use possible. This approach adopts a visual method that is obtained by improving conventional optic motion capture technology, instead of mechanical method using motion-sensing fibers. Compared to conventional visual methods, the proposed method has the following advantages and originalities Firstly, conventional visual methods use many cameras and equipments to reconstruct 3D pose with eliminating occlusions But the proposed method adopts a mono vision approachthat makes simple and low cost equipments possible. Secondly, conventional mono vision methods have difficulty in reconstructing 3D pose of occluded parts in images because they have weak points about occlusions. But the proposed approach can reconstruct occluded parts in images by using originally designed thin-bar-shaped optic indicators. Thirdly, many cases of conventional methods use nonlinear numerical computation image analysis algorithm, so they have inconvenience about their initialization and computation times. But the proposed method improves these inconveniences by using a closed-form image analysis algorithm that is obtained from original formulation. Fourthly, many cases of conventional closed-form algorithms use approximations in their formulations processes, so they have disadvantages of low accuracy and confined applications due to singularities. But the proposed method improves these disadvantages by original formulation techniques where a closed-form algorithm is derived by using exponential-form twist coordinates, instead of using approximations or local parameterizations such as Euler angels.

A Two-step Kalman/Complementary Filter for Estimation of Vertical Position Using an IMU-Barometer System (IMU-바로미터 기반의 수직변위 추정용 이단계 칼만/상보 필터)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Estimation of vertical position is critical in applications of sports science and fall detection and also controls of unmanned aerial vehicles and motor boats. Due to low accuracy of GPS(global positioning system) in the vertical direction, the integration of IMU(inertial measurement unit) with the GPS is not suitable for the vertical position estimation. This paper investigates an IMU-barometer integration for estimation of vertical position (as well as vertical velocity). In particular, a new two-step Kalman/complementary filter is proposed for accurate and efficient estimation using 6-axis IMU and barometer signals. The two-step filter is composed of (i) a Kalman filter that estimates vertical acceleration via tilt orientation of the sensor using the IMU signals and (ii) a complementary filter that estimates vertical position using the barometer signal and the vertical acceleration from the first step. The estimation performance was evaluated against a reference optical motion capture system. In the experimental results, the averaged estimation error of the proposed method was 19.7 cm while that of the raw barometer signal was 43.4 cm.

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

Relationship between Attenuation of Impact Shock at High Frequency and Flexion-Extension of the Lower Extremity Joints during Downhill Running

  • Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Objective: The purpose of this study was to determine the interrelationship between ranges of motion of the knee and ankle joints on the sagittal plane and the attenuation magnitude of impact shock at high frequency (9~20 Hz) in the support phase during downhill running. Method: Fifteen male heel-toe runners with no history of lower extremity injuries were recruited for this study (age, $25.07{\pm}5.35years$; height, $175.4{\pm}4.6cm$; mass, $75.8{\pm}.70kg$). Two uniaxial accelerometers were mounted to the tuberosity of tibia and sacrum, respectively, to measure acceleration signals. The participants were asked to run at their preferred running speed on a treadmill set at $0^{\circ}$, $7^{\circ}$, and $15^{\circ}$ downhill. Six optical cameras were placed around the treadmill to capture the coordinates of the joints of the lower extremities. The power spectrum densities of the two acceleration signals were analyzed and used in the transfer function describing the gain and attenuation of impact shock between the tibia and the sacrum. Angles of the knee and ankle joints on the sagittal plane and their angle ranges were calculated. The Pearson correlation coefficient was used to test the relationship between two variables, the magnitude of impact shock, and the range of joint angle under three downhill conditions. The alpha level was set at .05. Results: Close correlations were observed between the knee joint range of motion and the attenuation magnitude of impact shock regardless of running slopes (p<.05), and positive correlations were found between the ranges of motion of the knee and ankle joints and the attenuation magnitude of impact shock in $15^{\circ}$ downhill running (p<.05). Conclusion: In conclusion, increased knee flexion might be required to attenuate impact shock during downhill and level running through change in stride or cadence while maintaining stability, and strong and flexible ankle joints are also needed in steeper downhill running.

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.

A Study on Fast Iris Detection for Iris Recognition in Mobile Phone (휴대폰에서의 홍채인식을 위한 고속 홍채검출에 관한 연구)

  • Park Hyun-Ae;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.19-29
    • /
    • 2006
  • As the security of personal information is becoming more important in mobile phones, we are starting to apply iris recognition technology to these devices. In conventional iris recognition, magnified iris images are required. For that, it has been necessary to use large magnified zoom & focus lens camera to capture images, but due to the requirement about low size and cost of mobile phones, the zoom & focus lens are difficult to be used. However, with rapid developments and multimedia convergence trends in mobile phones, more and more companies have built mega-pixel cameras into their mobile phones. These devices make it possible to capture a magnified iris image without zoom & focus lens. Although facial images are captured far away from the user using a mega-pixel camera, the captured iris region possesses sufficient pixel information for iris recognition. However, in this case, the eye region should be detected for accurate iris recognition in facial images. So, we propose a new fast iris detection method, which is appropriate for mobile phones based on corneal specular reflection. To detect specular reflection robustly, we propose the theoretical background of estimating the size and brightness of specular reflection based on eye, camera and illuminator models. In addition, we use the successive On/Off scheme of the illuminator to detect the optical/motion blurring and sunlight effect on input image. Experimental results show that total processing time(detecting iris region) is on average 65ms on a Samsung SCH-S2300 (with 150MHz ARM 9 CPU) mobile phone. The rate of correct iris detection is 99% (about indoor images) and 98.5% (about outdoor images).

Study of Animation 3-Dimensional Motion Picture (애니메이션 입체 영화에 대한 연구)

  • Min, Kyung-Mi
    • Cartoon and Animation Studies
    • /
    • s.9
    • /
    • pp.127-142
    • /
    • 2005
  • Not only in Korea but throughout the entire world millions of people are in contact with images. Images have become a medium through which to transmit anything from simple visualizations of moving images to knowledge and information. The age of the internet has arisen thanks to scientific development, and the internet generation's acquisition of information is continuously becoming faster. The spectators, ufo must choose amongst the excessive amount of available information, are changing along with it just as quickly. The method of visual transmission has changed to match the demands of the fast-changing pace of the new generation. In order to receive an instantaneous selection amongst much information, the primary requisite is attracting one's attention, and then presenting a corresponding feeling of satisfaction. The early stages of film arose from the desire to capture one's actual situation as it realty is. Unsatisfied with the still picture, people developed the motion picture. Research has succeeded in reproducing 3-dimensional images more realistic than the actual image we perceive as a result of the difference in visual perspective of both eyes and their response to rays of light From color film to 3-dimensional pictures, people enjoy the magnificent results of this. All fields within the category of film are continuously studying the human desire to pursue their visual side, namely the pursuit of visual images with a maximum sense of reality. The images that millions of people around the world see now are flat. The screen's depth and optical illusions effectively give a sense of reality while conveying information. However, although the flat screen is able to create a sense of depth using the different visual perspective of each eye for the realization of a cubic effect, there are limitations. Entering the 21s1 century, there is a quickly-arising branch within the field of image media which seeks to overcome these limitations Although 3-dimensional images began in films, entering the latter half of the 20th century, due to development of 3-dimensional images using the mediums of the animation field, cellular phones, advertisement screens, television etc., without restriction is designated as 'image.'. With research having started around 1900 and continuing for over 100 years, we are now able to witness the popularization of 3-dimensional films happening before our very eyes. Within our own country, we can frequently see them at amusement parks and museums. In the future, through the popularization of HDTV etc., there is a good outlook for practical use of 3-dimensional images in televisions with advanced picture qualify as well as in other areas. Together with the international current, research on 3-dimensional films has been activated in Korea and is rising as a main current in the film industry. Within this context, the contents and understanding of 3-dimensional images must keep in step with the pace of technical advancements. In order to accelerate of development of film contents to keep in pace with technical developments, this dissertation presents the techniques and technical aspects of future developments, and shows the need to prepare in advance to make the field grow- and thereby avoid having a lack of experts and being conquered by other nations in the field - rather than only advancing the technical aspects and importing the contents. This dissertation aims to stimulate interest and continual research by progressive-thinking people related to the film industry. Part II looks into the definition and types of 3-dimensional motion pictures, the terminology, the fundamentals of image formation, current market fluctuations, and looks into 3-dimensional techniques which can be borrowed and introduced in 3-dimensional animations. Part III concerns 3-dimensional animated films. It analyzes 3-dimensional production techniques while using the introduction of specific animation techniques in the 2004 production Lee Sun Shin and Nelson - Naval Heroes 3-dimensional animation produced in 2004 by Clay & Puppet Stop-Motion Animation & Computer Graphic. Original Korean title: 해전영웅 이순신과 넬슨. as an example, and it also looks into how current film techniques used in animations can be applied in 3-dimensional films. Additionally, the actual stages of the various fields of 3-dimensional animations are presented. Given the current direction and advancement of 3-dimensional films making use of animations and the possible realization of this field, the author plans to weigh the development of this yet unexploited new market Not looking at the current progress of the field, but rather the direction of the hypothetical types of animation techniques, the author predicts the marketability and possibility of development of each area.

  • PDF