• Title/Summary/Keyword: optical measuring system

Search Result 509, Processing Time 0.041 seconds

Design and Analysis of a Receiver-Transmitter Optical System for a Displacement-Measuring Laser Interferometer (위치변위 레이저 간섭계용 송수신 광학계의 설계 및 분석)

  • Yun, Seok-Jae;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • We present a new type of receiver-transmitter optical system that can be adapted to the sensor head of a displacement-measuring interferometer. The interferometer is utilized to control positioning error and repetition accuracy of a wafer, down to the order of 1 nm, in a semiconductor manufacturing process. Currently, according to the tendency of scale-up of wafers, an interferometer is demanded to measure a wider range of displacement. To solve this technical problem, we suggest a new type of receiver-transmitter optical system consisting of a GRIN lens-Collimating lens-Afocal lens system, compared to conventional receiver-transmitter using a single collimating lens. By adapting this new technological optical structure, we can improve coupling efficiency up to about 100 times that of a single conventional collimating lens.

Electrical Characteristics of Optical Current Transducer on Gas Insulated Switchgear (GIS용 광CT의 전기적 특성)

  • Lee, Su-Woong;Lee, Sung-Gap;Noh, Hyeon-Ji;Ahn, Byeong-Rib;Won, Woo-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.319-320
    • /
    • 2007
  • We researched basic study about electrical characteristics of Zinc Selenide (Faraday Cell), which is known for various temperature of good-performance, that applied measuring current or protecting instrument by Optical Current Transducer, on Gas Insulated Switchgear. Measuring System consists of VCSEL produced 850nm IR Laser, Pin Photo Diode made of GaAs surveyed as Optical Power Meter, and Optical Fibers specified Multi-mode. We observed optical output changes during measurement of currents increasing by 100[A] in range from 0[A] to 1,000[A] and set temperature condition increasing by $5[^{\circ}C]$ in a range from $30[^{\circ}C]\;to\;60[^{\circ}C]$.

  • PDF

Study on Modeling and Experiment of Optical Three Axis Tool-Origin Sensor for Applications of Micro Machine-Tools (초소형 공작기계 적용을 고려한 광학식 3 축 공구원점 센서 모델링 및 실험에 관한 연구)

  • Shin, Woo-Cheol;Lee, Hyeon-Hwa;Ro, Seung-Kook;Park, Jong-Kweon;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • One of the traditional optical methods to monitor a tool is a CCD sensor-based vision system which captures an aspect of the tool in real time. In the case using the CCD sensor, specific lens-modules are necessary to monitor the tool with higher resolution than its pixel size, and a microprocessor is required to attain desired data from captured images. Thus theses additional devices make the entire measurement system complex. Another method is to use a pair of an optical source and a detector per measuring axis. Since the method is based on the intensity modulation, the structure of the measurement system is simper than the CCD sensor-based vision system. However, in the case measuring the three dimensional position of the tool, it is difficult to apply to micro machine-tools because there may not be space to integrate three pairs of an optical source and a detector. In this paper, in order to develop a tool-origin measurement system which is employed in micro machine-tools, the improved method to measure a tool origin in x, y and z axes is introduced. The method is based on the intensity modulation and employs one pair of an optical source radiating divergent beams and a quadrant photodiode to detect a three dimensional position of the tool. This paper presents the measurement models of the proposed tool-origin sensor. The models were verified experimentally The verification results show that the proposed method is possible and the induced models are available for design.

Optical Interferometric Characterization of Nonlinear Optical Polymer Thin Films

  • Wu, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.149-155
    • /
    • 1998
  • The linear electro-optic (EO) effect is one of the second-order nonlinear optical effects existing in a noncentrosymmetric macroscopic system. In a polymer thin film, the noncentrosymmetry is achieved by electric field poling. The magnitude of the linear EO response is determined through the orientational distribution function of hyperpolarizable molecular dipoles. The relation between the linear EO coefficient and the second-order nonlinear optical susceptibility is explained. Three different methods of measuring the linear EO coefficient of a poled nonliner optical polymer thin film are introduced and discussed. All of them make use of the interferometric technique, the difference being in the optical parameters which are interfering.

  • PDF

Image Blurring Estimation and Calibration with a Joint Transform Correlator

  • Jeong, Man Ho
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.472-476
    • /
    • 2014
  • The Joint Transform Correlator (JTC) has been the most suitable technique for real time optical pattern recognition and target tracking applications. This paper proposes a new application of the JTC system for an analysis of the blurring effect of the optical images caused by a defocused lens. We present the relation between the correlation peak, optical transfer function (OTF), and the amount of blurring caused by focusing error. Moreover, we show a possibility of calibrating the blurred image by simply measuring the correlation peak.

A possible optical measuring technique for corona discharge by use of Pockets sensor (광계측 시스템을 이용한 코로나 방전 검출)

  • Kang, Won-Jong;Ma, Ji-Hoon;Chang, Yong-Moo;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1561-1563
    • /
    • 2001
  • In this paper, an novel optical measuring system based on the electro-optic effect has been proposed and realized using Pockels cell with a view to detecting partial discharge taking place at the needle plane electrode. This system has the following advantages ; nonmetallic probe sensor, immune to external EMI noise and broad band response of the Pockels cell from DC to GHz. And also it is constructed by He-Ne laser, optical fiber, $LiNbO_3$ Pockels cell, photo detector, grin lens, oscilloscope and PC. The characteristics of the developed prototype sensor are investigated under AC and corona discharges.

  • PDF

The improvement of measuring method for the Optical Encoder using PIC. (PIC를 이용한 엔코더 계측방법 개선)

  • Kim, J.T.;Song, D.H.;Lee, B.H.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.149-151
    • /
    • 1997
  • This paper proposed a new method for the measurement of optical encoder. So far several methods were used for the encoder measurements, there were noise problems and needed many space to realize it. Specially, it is more serious under the multi-motor system. In this paper, we adapted the PIC microcontroller and replaced the TTL logics with the PIC software. Therefore, the effects of noise can be reduced, and we can realize the measuring method for the optical encoder under multi-motor system within one millisecond time base.

  • PDF

An Experimental Study on Chemiluminescence Characteristics of a Turbulent Flame (난류화염의 화학적 발광 특성에 관한 실험적 연구)

  • Kwon, Minjun;Kim, Sewon;Lee, Changyeop;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • The object of this study is a deriving the relations according to the measuring locations between the chemiluminescence and the flame state at commercial burner. In this study, the flame chemiluminescence of the flame of commercial burner is measured using a photomultiplier tube and the optical band-pass filter. In addition, the contour of the chemiluminescence of the flame is measured using the common CCD camera and the optical band-pass filters, and the acquired images is converted by the simple image processing as a matrix form. The results showed that certain relationship between optical data and equivalence ratio exists, and the contour according to the measuring location of the flame chemiluminescence is different by equivalence ratio.

Methods and Systems for High-temperature Strain Measurement of the Main Steam Pipe of a Boiler of a Power Plant While in Service

  • Guang, Chen;Qibo, Feng;Keqin, Ding
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.770-777
    • /
    • 2016
  • It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than $0.4ppm/^{\circ}C$, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.

Measurement of the 3-Dimensional Shapes of Specular Objects by Using Double Pass Retroreflection (재귀반사 특성을 이용한 경면물체의 3차원 형상 측정)

  • Park, W.S.;Ryu, Y.K.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.64-72
    • /
    • 1996
  • This paper is aimed to develop an optical method for measuring 3-dimensional shapes of specular objects having curved surfaces. The existing methods measuring the shapes of specular objects have several common disadvantages: they may not work properly if the surface is highly specular like mirror surface or if the reflectance property is not uniform over the surface. And, they often require the a priori knowledege about the surface reflectance. To overcome these disadvantages, the measurement using double pass retroreflection method is proposed in this paper. For this measurement principle, an experimental measuring system is designed and prepared which is composed of a galvanometer scanner, a beam splitter, a laser source, a CCD camera, and a reflector made of retroreflective material. To verify the effectiveness of the measurement system a series of experiments are performaed for various specular objects. The results observed from the experiments show that the developed optical sensing system can be an effective mean of measuring the 3-D shapes of specular objects.

  • PDF