• Title/Summary/Keyword: optical image

Search Result 2,687, Processing Time 0.026 seconds

Image Generator Design for OLED Panel Test (OLED 패널 테스트를 위한 영상 발생기 설계)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In this paper, we propose an image generator for OLED panel test that can compensate for color coordinates and luminance by using panel defect inspection and optical measurement while displaying images on OLED panel. The proposed image generator consists of two processes: the image generation process and the process of compensating color coordinates and luminance using optical measurement. In the image generating process, the panel is set to receive the panel information to drive the panel, and the image is output by adjusting the output setting of the image generator according to the panel information. The output form of the image is configured by digital RGB method. The pattern generation algorithm inside the image generator outputs color and gray image data by transmitting color data to a 24-bit data line based on a synchronization signal according to the resolution of the panel. The process of compensating color coordinates and luminance using optical measurement outputs an image to an OLED panel in an image generator, and compensates for a portion where color coordinates and luminance data measured by an optical module differ from reference data. To evaluate the accuracy of the image generator for the OLED panel test proposed in this paper, Xilinx's Spartan 6 series XC6SLX25-FG484 FPGA was used and the design tool was ISE 14.5. The output of the image generation process was confirmed that the target setting value and the simulation result value for the digital RGB output using the oscilloscope matched. Compensating the color coordinates and luminance using optical measurements showed accuracy within the error rate suggested by the panel manufacturer.

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

Implementation of Stable Optical Information Security System using Interference Hologram and Photorefractive Material (간섭 홀로그램과 광굴절매질을 이용한 안정한 광 정보보호 시스템의 구현)

  • 김철수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.64-76
    • /
    • 2001
  • In this paper, A simple image hologram encryption and decryption technique based on the principle of interference are proposed. The technique using the photorefractive material for getting a stable interference pattern is also proposed. And combine these two techniques, I would like to implement a stable optical information security system. In the encrypting process, I would generate binary phase hologram which can reconstruct original image perfectly, and regard this hologram as original image to be encrypted image. And then the hologram is encrypted as randomly generated binary phase image. Reference image is also generated from the encrypted image by applying interference rule. In the decrypting process, I can get a interference intensity by interfering the reference image and the encrypted image in the interferometer. and transform inferference intensity information into phase information. I recover original image by inverse Fourier transforming the phase information. In this process, the intensity information generated by interference of two images is very sensitive to external vibrations. So, I would like to get a stable interference using the characteristic of SPPCM(self pumped phase conjugate mirror) in photorefractive materials, especially BaTiO₃.

  • PDF

Optical encryption system using random divided image and joint transform correlator (무작위 분할 영상과 결합변환 광 상관기를 이용한 암호화 시스템)

  • 최상규;서동환;신창목;김수중;배장근
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.636-642
    • /
    • 2003
  • We proposed the optical system using two divided halftone images to hide the original image and a joint transform correlator. The encryption procedure is performed by the Fourier transform of the product of each divided image by visual cryptography and the same random image which is generated by computer processing. As a result, we can obtain two Fourier divided images which are used as the encrypted image and the decrypting key, respectively. In the decryption procedure, both the encrypted image and the decrypting key are located on the joint input plane. Then the original image is reconstructed on a CCD camera which is located in the output plane. An autocorrelation term of joint transform correlator contributes to decrypt the original image. To demonstrate the efficiency of the proposed system, computer simulations and noise analysis are performed. The result show that the proposed system is a very useful optical certification system.

Multiple-image Encryption and Multiplexing Using a Modified Gerchberg-Saxton Algorithm in Fresnel-transform Domain and Computational Ghost Imaging

  • Peiming Zhang;Yahui Su;Yiqiang Zhang;Leihong Zhang;Runchu Xu;Kaimin Wang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.362-377
    • /
    • 2023
  • Optical information processing technology is characterized by high speed and parallelism, and the light features short wavelength and large information capacity; At the same time, it has various attributes including amplitude, phase, wavelength and polarization, and is a carrier of multi-dimensional information. Therefore, optical encryption is of great significance in the field of information security transmission, and is widely used in the field of image encryption. For multi-image encryption, this paper proposes a multi-image encryption algorithm based on a modified Gerchberg-Saxton algorithm (MGSA) in the Fresnel-transform domain and computational ghost imaging. First, MGSA is used to realize "one code, one key"; Second, phase function superposition and normalization are used to reduce the amount of ciphertext transmission; Finally, computational ghost imaging is used to improve the security of the whole encryption system. This method can encrypt multiple images simultaneously with high efficiency, simple calculation, safety and reliability, and less data transmission. The encryption effect of the method is evaluated by using correlation coefficient and structural similarity, and the effectiveness and security of the method are verified by simulation experiments.

Development of an intelligent camera for multiple body temperature detection (다중 체온 감지용 지능형 카메라 개발)

  • Lee, Su-In;Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.430-436
    • /
    • 2022
  • In this paper, we propose an intelligent camera for multiple body temperature detection. The proposed camera is composed of optical(4056*3040) and thermal(640*480), which detects abnormal symptoms by analyzing a person's facial expression and body temperature from the acquired image. The optical and thermal imaging cameras are operated simultaneously and detect an object in the optical image, in which the facial region and expression analysis are calculated from the object. Additionally, the calculated coordinate values from the optical image facial region are applied to the thermal image, also the maximum temperature is measured from the region and displayed on the screen. Abnormal symptom detection is determined by using the analyzed three facial expressions(neutral, happy, sadness) and body temperature values. In order to evaluate the performance of the proposed camera, the optical image processing part is tested on Caltech, WIDER FACE, and CK+ datasets for three algorithms(object detection, facial region detection, and expression analysis). Experimental results have shown 91%, 91%, and 84% accuracy scores each.

QPSK Modulation Based Optical Image Cryptosystem Using Phase-shifting Digital Holography

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • We propose a new technique for the optical encryption of gray-level optical images digitized into 8-bits binary data by ASCII encoding followed by QPSK modulation. We made an encrypted digital hologram with a security key by using 2-step phase-shifting digital holography, and the encrypted digital hologram is recorded on a CCD camera with 256 gray-level quantized intensities. With these encrypted digital holograms, the phase values are reconstructed by the same security key and are decrypted into the original gray-level optical image by demodulation and decoding. Simulation results show that the proposed method can be used for cryptosystems and security systems.