• Title/Summary/Keyword: optical fiber communications

Search Result 240, Processing Time 0.03 seconds

Long haul transmission link using a optimized circulating loop for optical wavelength division multiplexing signals (최적화된 반복루프를 이용한 파장분할다중화 광신호 장거리 전송)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1757-1763
    • /
    • 2014
  • Optical wavelength division multiplexing signals of eight non-return-to-zero 10 Gb/s channels were transmitted on the long-haul link up to 720 km. The link span was composed of 80 km single mode fiber, dispersion compensation fiber for complete compensation, and EDFAs. A circulating loop method was applied to the link experiment and the loop was optimized for the transmission link. Wavelength-dependent gain variation of EDFA was compensated using EDFAs of opposite gain slopes without expensive gain flattening filters. Average OSNR was aggravated to 22 dB and the worst OSNR channel variation was 9.7 dB after the transmission. It was confirmed by analyzing optical spectra that this OSNR variation was mainly caused by the hole burning effect of EDFA.

Performance Analysis of Optical SCM Link System for CDMA RF Signal Transmission (CDMA RF 신호 전송을 위한 SCM 광링크 시스템의 성능분석)

  • 유진태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1542-1550
    • /
    • 2000
  • Fiber optic link systems based on SCM scheme are widely used as efficient and economic RF signal links between base station and a central station in mobile communication networks. However, its performance can be seriously limited depending on the operational conditions of not only the optical transmission system but also the wireless link in various environments. In this paper, we propose an analytic model for performance analyses of the SCM fiber optic link for CDMA RF signal transmission in various link environments. We present optimal operational conditions taking account of the nonlinear effects of the optical transmission system, and the multiple access interference produced at the wireless link. It has been shown through the BER analyses in this paper that the selection of optical modulation index of the SCM fiber optic links can be found optimally to minimize the fiber optic link noises and intermodulation distortion due to LD.

  • PDF

Structure optimization of a L-band erbium-doped fiber amplifier for 64 optical signal channels of 50 GHz channel spacing (50 GHz 채널 간격의 64 채널 광신호 전송을 위한 L-band EDFA의 구조 최적화)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1666-1671
    • /
    • 2022
  • The structure of a high-power gain-flattened long wavelength band (L-band) optical amplifier was optimized, which was implemented for 64-channel wavelength division multiplexed optical signals with a channel spacing of 50 GHz. The output characteristics of this L-band amplifier were measured and analyzed. The amplifier of the optimized two-stage amplification configuration had a flattened gain of 20 dB within 1 dB deviation between 1570 and 1600 nm for -2 dBm input power condition. The noise figure under this condition was minimized to within 6 dB in the amplification bandwidth. The gain flattening was realized by considering only the characteristics of gain medium in the amplifier without using additional optical or electrical devices. The proposed amplifier consisted of two stages of amplification stages, each of which was based on the erbium-doped fiber amplifier (EDFA) structure. The erbium-doped fiber length and pumping structures in each stage of the amplifier were optimized through experiments.

An Analysis of FSK Transmission Characteristics of Spectrum Sliced Optical Signals (스펙트럼 분할된 광신호의 FSK 전송 특성 해석)

  • Ha, Eun-Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.339-344
    • /
    • 2016
  • Since transmissions of large amounts of data are frequent, users require more bandwidth, and the need for communications networks having greater bandwidth is increasing. One communications network satisfying this need is an optical communications network. Therefore, studies to increase the transmission capacity of optical communications systems have been carried out. However, in a general optical communications system, a signal transmitted through optical fiber (a transmission medium) is detected through direct detection in the receiving system. This method has a disadvantage in that the entire bandwidth of the optical signal cannot be utilized. Also, when transmitting an optical signal, there is a problem where the signal-to-noise ratio is affected by neighboring channels. To overcome this situation, various studies are being conducted to minimize the influence of external interference and noise. This paper overcomes the situation by transmitting spectrum-sliced signals using the digital transmission system, FSK. Analyzing the characteristics of the signals detected in the receiver of the optical communications system, Gaussian distribution is used for the PDF of the spectrum-sliced signal, and the signal at the receiving end of the optical communications system is assumed to have a k-square distribution. The results of the analysis confirmed it is better to transmit the spectrally divided signal rather than transmit the laser source.

Characterization of Wavelength Swept Laser with a Scanning Frequency at 1300 nm (1300 nm 대역 파장 훑음 레이저의 훑음 주파수에 따른 출력 특성)

  • Lee, Byoung-Chang;Oh, Min-Hyun;Jeon, Min-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.189-194
    • /
    • 2009
  • We demonstrate a ring type wavelength swept laser incorporating a fiber Fabry-Perot tunable filter in a laser cavity using 1300 nm semiconductor optical amplifier as a gain medium. The output characteristics of the wavelength swept laser according to the applied scanning frequencies are analyzed in the temporal and spectral domain. The output of the wavelength swept laser decreases dramatically as the scanning frequency increases. And there is a significant peak power imbalance between the forward scan and the backward scan as the scanning frequency increases. Its use in practical applications might be limited.

Optimum Design of High Speed Transmission SMF Link Using DCF (분산보상 광섬유를 이용한 초고속 단일모드 광섬유 전송링크의 최적 설계 연구)

  • 김용범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1518-1526
    • /
    • 2000
  • This paper proposes an optical transmission link design method based on an optimum compensation scheme using dispersion compensating fiber (DCF), so that high-speed long-distance optical transmission would be possible over the conventional standard single mode fiber (SMF) link. The proposed design method provides the maximized transmission distances according to the signal speeds, where the amplifier spacing and repeater spacing are optimized wit respect to self-phase modulation(SPM) due to fiber nonlinearity and amplified spontaneous emission (ASE) noises caused by optical amplifies. It is also shown that there exists an optimum input signal power range balancing the effects of ASE noise and SPM for the given amplifier spacing and repeater spacing.

  • PDF

PON 기술에 의한 FTTH 구현

  • 채창준
    • Information and Communications Magazine
    • /
    • v.15 no.7
    • /
    • pp.117-124
    • /
    • 1998
  • 정보통신에 대한 생활의 의존도가 높아지면서 일반가입자 구간의 전송속도도 함께 높아지고 있는 추세이다. 향후 2000년대를 대비하여 각 가정에까지 광케이블을 연결하자는 FTTH (fiber to the home) 전략에 따라 세계 각 국에서는 이에 대한 연구개발을 추진중에 있다. PON (passive optical network)은 FTTH를 현실적으로 실현하기 위한 전송장치 개념으로서 본 고에서는 이에 관련된 내용을 중심으로 연구개발 동향과 FTTH 구축 전망을 살펴본다.

  • PDF

An Optical Fiber Perimeter Guard System Using OTDRs (OTDR을 이용한 광섬유 외곽경비시스템에 관한 연구)

  • Chang, Jin-Hyeon;Lee, Yong-Cheol;Shin, Dong-Ho;Oh, Sang-Gun;Lee, Jong-Youn;Jung, Jin-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1236-1243
    • /
    • 2010
  • The perimeter defense system was created and its characteristics were evaluated. It was designed to utilize the fiber sensing device, namely OTDR(Optical Time Domain Reflectometer) which has been used for the maintenance of the optical communication network. An OTDR was constituted by a pulse laser with the nature of 1310nm, +15dBm for the observation of 400 meter optical fence. The high-speed 32-bit processor(S3C2440) has applied to MPU(Main Processor Unit) which helps to improve the performance of OTDR algorithms. Consequently, the maximum error was 0.84 meter on the performance test of the 10km monitoring and the pass criteria of ${\pm}1m$ satisfied in all the sections. The alarm delay time was under 3 sec after detecting the disorder. For the case of secondary trespassing after primary trespassing, the optical switch was installed in OTDR to monitor the secondary trespassing and to measure the multi-point detection. Therefore, this paper shows that the detections of secondary trespassing and multi-point is possible by means of optical switch.

A design method for optical fiber filter of lattice structure (격자형 광파이버필터의 설계에 관한 연구)

  • 이채욱;문병현;김신환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1248-1256
    • /
    • 1993
  • The propagation and delay properties in opical fiber are particularly attractive because digital signal processing and conventional analog signal processing techniques such as those using surface acoustic wave devices are limited In their usefulness for signal bandwidth exceeding one or two GHz, although they are very effective at lower frequencies. Since an accurate, low loss and short time delay elements can be obtained by using such an optical fiber, optical signal precessing has attracted much attention for high speed and broad-band signal precessing in particular channel separation filtering for optical FDM signals. In this paper, we consider a coherent optical lattice filter, which uses coherent light sources and consists of directional couplers and optical fiber delay elemnts. The optical fiber fitters are more restricted than the usual digital filters. The reasons are as follows. 1) the coupling coefficients of directional couplers are restricted to the number between 0 and 1. 2) optical signal E(complex amplitude) is divided into J If-$\boxUl$ and J L/7$\div$$\boxUl$ at the directional coupler. Considering these restrictions and in this case all the coupling coefficients of summing and branching elements are set to be equal, we have given design formulae for optical lattice filter, which make the best use of optical signal energy.

  • PDF

Transmission Performance Comparison of Direction Detection-Based 100-Gb/s Modulation Formats for Metro Area Optical Networks

  • Chung, Hwan Seok;Chang, Sun Hyok;Lee, Jonghyun;Kim, Kwangjoon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.800-806
    • /
    • 2012
  • Transmission performances of direct detection-based 100-Gb/s modulation formats are investigated and compared for metro area optical networks. The effects of optical signal-to-noise ratio sensitivity, chromatic dispersion, cross-channel nonlinearity, and transmission distance on the performance of differential 8-ary phase-shift keying (D8PSK), differential phase-shift keying plus three-level amplitude-shift keying (DPSK+3ASK), and dual-carrier differential quaternary phase-shift keying (DC-DQPSK) are evaluated. The performance of coherent dual-polarization quadrature phase-shift keying (DP-QPSK) with block phase estimation and coherent DP-QPSK with digital differential detection are also presented for reference. According to our analysis, all three direct detection modulation formats could transmit a 100-Gb/s signal over several hundred kilometers of a single-mode fiber link. The results also show that DC-DQPSK outperforms D8PSK and DPSK+3ASK, and the performance of DC-DQPSK is comparable to that of coherent DP-QPSK with digital differential detection. The maximum transmission distance of DC-DQPSK is over 1,000 km, which is enough distance for metro applications.