• Title/Summary/Keyword: optical fiber communications

Search Result 240, Processing Time 0.028 seconds

Optical transmission technology of Ultra high-speed and Ultra long distance (초고속 초장거리 광전송 기술)

  • 이봉영
    • Information and Communications Magazine
    • /
    • v.11 no.2
    • /
    • pp.77-89
    • /
    • 1994
  • High speed optical fiber transmission technology has been remarkably improved during the past 20 years. This paper presents recent research status and future technological issues for the future information society, that is, the Tb/s transmission by frequency division multiplexing and the ultra long-distance by optical soliton transmission. Erbium-doped fiber amplifier and recent optical technology have brought optical transmission system of up to 10 Gb/s to the point of commercialization. Taking into account the future super information highway, that is, B-ISDN network, ultra wide-band picture-based information can be provided for many subscribers via existing optical fiber cables. However, to achieve the high speed transmission, the technologies must be developed not only for transmission lines but also for transmission nodes. Since the conventional signal transmission/processing technique using electronics has the limit in its speed, novel photonic technology is being developed for this purpose. On the other hand, optical solitons propagate stably through optical fibers, without pulse broadening effect of the fiber dispersion. Since the pulse broadening effect becomes serious as the transmission speed increases, optical solitons is the important technologies to realize the high speed, long distance transmission.

  • PDF

Analysis of Coupled Mode Theory for Design of Coupler Between Optical Fiber And Grating Assisted Waveguide (광섬유와 격자구조 도파로 결합기 설계를 위한 결합 모드 이론 분석)

  • Heo, Hyung-Jun;Kim, Sang-In
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.561-568
    • /
    • 2017
  • In order to effectively utilize the Coarse Wavelength Division Multiplexing(CWDM) technology in optical integrated devices, a design of a wavelength selective coupler structure between an optical fiber and an optical waveguide in a flat substrate is can be considered. In this paper, we consider the coupling between a silicon waveguide with an air trench and a single mode fiber. We investigated the tendency of coupling efficiency and its limitations according to the grating depth. For this purpose, the coupling efficiency of coupler structure designed through modeling based on coupled mode theory is predicted and quantitatively compared with simulation results using finite element method.

Measurement of Time Delay in Optical Fiber Line Using Rayleigh Scattering (Rayleigh 산란을 이용한 광선로의 time delay 측정)

  • Kwon, Hyung-Woo;Yu, Il;Yu, Yun-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.365-369
    • /
    • 2012
  • It is very important to control synchronization by inter-network delay compensation in high speed synchronous optcial transmission network systems. In this study we designed a delay measurement system based on OTDR using Rayleigh backscatterer in order to compensate for time delay due to the length of optical fiber line. We observed waveform variations on both averaging time and peak power of laser pulse. Finally, we executed experimental demonstration on its accuracy and test repeatability by comparison to the methods practically used in the industry. Experimental results show maximum error of 0.06usec and standard deviation of 0.021usec, which means it's possibly applied to delay control system for mobile repeaters and stations.

Efficient Provisioning for Multicast Virtual Network under Single Regional Failure in Cloud-based Datacenters

  • Liao, Dan;Sun, Gang;Anand, Vishal;Yu, Hongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2325-2349
    • /
    • 2014
  • Network virtualization technology plays a key role in cloud computing, which serves as an effective approach for provisioning a flexible and highly adaptable shared substrate network to satisfy the demands of various applications or services. Recently, the problem of mapping a virtual network (VN) onto a substrate network has been addressed by various algorithms. However, these algorithms are typically efficient for unicast service-oriented virtual networks, and generally not applicable to multicast service-oriented virtual networks (MVNs). Furthermore, the survivable MVN mapping (SMVNM) problem that considers the survivability of MVN has not been studied and is also the focus of this work. In this research, we discuss SMVNM problem under regional failures in the substrate network and propose an efficient algorithm for solving this problem. We first propose a framework and formulate the SMVNM problem with the objective of minimizing mapping cost by using mixed integer linear programming. Then we design an efficient heuristic to solve this problem and introduce several optimizations to achieve the better mapping solutions. We validate and evaluate our framework and algorithms by conducting extensive simulations on different realistic networks under various scenarios, and by comparing with existing approaches. Our simulation experiments and results show that our approach outperforms existing solutions.

A Novel High Speed Frequency Sweeping Signal Generator in X-band Based on Tunable Optoelectronic Oscillator

  • Sun, Mingming;Chen, Han;Sun, Xiaohan
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2018
  • A novel X-band high speed frequency sweep signal generator based on a tunable optoelectronic oscillator (OEO) incorporating a frequency-swept laser is presented and the theoretical fundamentals of the design are explained. A prototype of the generator with tuning range from 8.8552 GHz to 10.3992 GHz and a fine step about 8 MHz is achieved. The generated radiofrequency signal with a single sideband (SSB) phase noise lower than -100 dBc/Hz@10KHz is experimentally demonstrated within the whole tunable range, without any narrow RF band-pass filters in the loop. And the tuning speed of the frequency sweep signal generator can reach to over 1 GHz/s benefiting from applying a novel dispersion compensation modular instead of several tens of kilometers of optical fiber delay line in the system.

Demonstration of Mobile Fronthaul Test Bed Based on RoF Technology Supporting Two Frequency Assignments and 2 × 2 MIMO Antennas

  • Cho, Seung-Hyun;Han, Changyo;Chung, Hwan Seok;Lee, Jong Hyun
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1055-1064
    • /
    • 2015
  • We demonstrate a next-generation high-capacity mobile fronthaul based on radio over fiber (RoF) technology, which links between a digital unit and a radio unit supporting two frequency assignments and $2{\times}2$ multiple input, multiple output antennas. To confirm the technical feasibility of a mobile fronthaul, we experimentally investigate its down- and uplink end-to-end performances including the optical and radio frequency (RF) signal path. Frequency-dependent performance deviations, error vector magnitude variations, overall system performance variations caused by optical to electrical conversion, and intermediate frequency to RF conversions are examined. Experimental verifications on multiple LTE uplink signals are performed for the first time. We also demonstrate several commercial mobile Internet services, YouTube video streaming, and file transfers using off-the-shelf mobile devices, through a mobile fronthaul based on RoF.

Adaptive Differentiated Integrated Routing Scheme for GMPLS-based Optical Internet

  • Wei, Wei;Zeng, Qingji;Ye, Tong;Lomone, David
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.269-279
    • /
    • 2004
  • A new online multi-layer integrated routing (MLIR) scheme that combines IP (electrical) layer routing with WDM (optical) layer routing is investigated. It is a highly efficient and cost-effective routing scheme viable for the next generation integrated optical Internet. A new simplified weighted graph model for the integrated optical Internet consisted of optical routers with multi-granularity optical-electrical hybrid switching capability is firstly proposed. Then, based on the proposed graph model, we develop an online integrated routing scheme called differentiated weighted fair algorithm (DWFA) employing adaptive admission control (routing) strategies with the motivation of service/bandwidth differentiation, which can jointly solve multi-layer routing problem by simply applying the minimal weighted path computation algorithm. The major objective of DWFA is fourfold: 1) Quality of service (QoS) routing for traffic requests with various priorities; 2) blocking fairness for traffic requests with various bandwidth granularities; 3) adaptive routing according to the policy parameters from service provider; 4) lower computational complexity. Simulation results show that DWFA performs better than traditional overlay routing schemes such as optical-first-routing (OFR) and electrical-first-routing (EFR), in terms of traffic blocking ratio, traffic blocking fairness, average traffic logical hop counts, and global network resource utilization. It has been proved that the DWFA is a simple, comprehensive, and practical scheme of integrated routing in optical Internet for service providers.

Performance Analysis and the Novel Optical Decoder Scheme for Optical CDMA System (광 CDMA를 위한 새로운 광복호기 설계와 성능분석)

  • 강태구;윤영설;최영완
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.712-722
    • /
    • 2002
  • We have investigated a novel optical decoder for a fiber-optic code division multiple access(CDMA) communication systems. The conventional optical encoder and decoder have the advantage of simple structure. However the number of users in the system is limited by the auto- and cross-correlation properties generated in decoding process. In previous studies, to improve the system performance, although they used an optical code that minimize the sidelobe and cross-correlation, could not yet find a novel methods for performance improvement in fiber-optic CDMA system. Thus, it is necessary to investigate the novel optical decode in order to improve the performance of system. In this paper, we schematize the AND gate logic element(AGLE) composed with 1$\times$2 or 1$\times$3 coupler and the optical thyristor and propose the novel optical decoder using K(weight) AGLE. The optical thyristor only passes the overlapped signal and clips other signals. Such a novel concept means that the optical thyristor can operate as a hard-limiter. We analyze the fiber-optic CDMA system using the novel optical decoder with simulation and is found that the novel optical decoder using the AGLE and optical thyristor excludes the sidelobe and cross-correlation intensity between any two sequences.

High Speed RZ-Format Transmission Using Very Short Pulses and the Chromatic Dispersion of the Transmission Fiber (매우 짧은 펄스를 이용한 RZ 포맷 광전송의 성능과 전송용 광섬유의 색 분산과의 상관관계)

  • 박상규;정제명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1607-1611
    • /
    • 2001
  • The dependence of the performance of 40-Gb/s optical transmission using short pulses on the fiber chromatic dispersion is numerically studied. When very short pulses are used, the wide spectrum of the optical signal and the chromatic dispersion of the fiber interact in such a way that results in the reduction of nonlinear impairments of the transmission performance. The degree of this reduction is determined by the combined effects of chromatic dispersion of the fiber and the strength of the optical signal and the transmission distance. When 3ps-long pulses were used for the transmission, the eye-closure penalty was highest with the dispersion D=4ps/nm/km.

  • PDF

Mid-Span Spectral Inversion Technique in Lumped Dispersion Managed WDM Transmission Systems (집중형 분산 제어 WDM 전송 시스템에서 Mid-Span Spectral Inversion 기술)

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.7-15
    • /
    • 2008
  • In this paper, it is investigated that the limitation due to the asymmetry of optical power with respect to optical phase conjugator(OPC) in mid-span spectral inversion(MSSI) for compensating optical signal distortion due to group velocity dispersion(GVD) and nonlinearities generated in fiber by combining with lumped dispersion management(DM) technique into MSSI. Two kinds of lumped DM configuration(configuration A and configuration B) are considered and compared each other in this research. Configuration A consists of two dispersion compensating fiber(DCF) span positioned after transmitter and before receiver, respectively. Configuration B consists of two dispersion compensating fiber(DCF) span positioned before and after OPC placed at middle of total transmission link, respectively. It is confirmed that the transmission performances are more improved by the configuration A combined with MSSI than configuration B. Also, it is confirmed that the best performance of overall channels are obtained by making net residual dispersion(NRD) to have positive value in self phase modulation(SPM)-limited WDM transmission systems, irrelevant to the configuration of DM.