• Title/Summary/Keyword: optical fiber amplifiers

Search Result 53, Processing Time 0.025 seconds

1.6 Tb/s (160x10 Gb/s) WDM Transmission over 2,000 km of Single Mode Fiber (1.6 Tb/s (160x10 Gb/s) WDM 신호의 단일 모드 광섬유 2,000 km 전송)

  • 한진수;장순혁;이현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.712-718
    • /
    • 2004
  • We report 1.6 Tb/s (160${\times}$10 Gb/s) WDM transmission over 2,000 km of single mode fiber using distributed hybrid(distributed Raman amplifier+Erbium-doped fiber amplifier) optical amplifiers. After transmission over 2,000 km of single mode fiber, average optical signal to noise ratios of C/L-band were 20.5 dB, 21.9 dB, respectively. The minimum Q-factors of each band were 14.65 dB (BER=5.8e-8) in C-band, 13.75 dB (BER=5.0e-7) in L-band without forward error correction. We performed 1.6 Tb/s error-free transmission over 2,000 km of single mode fiber using Reed-Solomon (255, 239) forward error correction code.

A Novel Technique to Minimize Gain-Transient Time of WDM signals in EDFA

  • Shin, Seo-Yong;Kim, Dae-Hoon;Kim, Sung-Chul;Lee, Sang-Hun;Song, Sung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.174-177
    • /
    • 2006
  • We propose a new technique to minimize gain-transient time of wavelength-division-multiplexing (WDM) signals in erbium-doped fiber amplifiers (EDFA) in channel add/drop networks. We have dramatically reduced the gain-transient time to less than $3{\mu}sec$ by applying, for the first time to our knowledge, a disturbance observer with a proportional/integral/differential (PID) controller to the control of EDFA gain. The $3{\mu}sec$ gain-transient time is the fastest one ever reported and it is approximately less than 1.5% of $200{\mu}sec$ gain-transient time of commercially available EDFAs for WDM networks. We have demonstrated the superiority of the new technique by performing the simulation with a numerical modeling software package such as the $Optsim^{TM}$.

Determination of optical properties of Pr3+-doped selenide glasses of Ge-Sb-Se system using spectroscopic ellipsometry (분광타원법을 이용한 Pr 첨가 Ge-Sb-Se 계열 셀레나이드 유리의 굴절률 결정)

  • 신상균;김상준;김상열;최용규;박봉제;서홍석
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.594-599
    • /
    • 2003
  • By using the spectroscopic ellipsometry, we have measured and analyzed the optical characteristics of P $r^3$$^{+}$-doped selenide glasses of Ge-Sb-Se system, a strong candidate material for U band fiber amplifiers. The ellipsometric spectra measured in the transparent wavelengths range of the material were all fitted to a model consisting of ambient/roughness/thin fil $m_strate structures to obtain simultaneously the optical properties such as refractive index, in terms of Sellmeier parameters and film structure of P $r^3$$^{+}$-doped selenide glasses. Repeated measurements on different positions in both polished faces rendered to verify positional dependence of measured spectre-ellipsometric data. Hence, the model made possible the analysis of the optical characteristics of the glasses. Even though surface roughness was mainly responsible for the position dependencies, the averaged refractive indexes were as precise as to reflect the minute compositional change tantamount to 1 mol%. The measured refractive indexes are useful for design of core and clad compositions of single-mode selenide optical fibers.

Ultra-broadband Optical Amplifier for WDM Optical Transmission Networks (파장분할다중 방식 광전송망을 위한 초광대역 광증폭기)

  • Lee, Young-Sun;Jung, Jae-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • Affordable traffic capacity of each node in networks is expected to reach in Tb/s range in proportion to the rapid growth of Internet users. To transmit more than Tb/s per fiber pair, WDM should be used as well as existing TDM. To increase the capacity of transmission in WDM networks, there are two ways, increasing channel speed or channel quantity. To increase the channel quantity, there are two ways, narrow spacing or expanding transmission bandwidth. To expand bandwidth, ultra-broadband optical amplifier technology is necessary. In this paper, we introduce EDFA in effect at C/L band, FRA, and some optical amplifiers in effect at S band, and analyze the development trend of various amplification technologies.

  • PDF

Characteristics of a Wavelength-swept Laser with a Polygon-based Wavelength Scanning Filter (다면체 거울 스캐닝 파장 필터를 이용한 파장 훑음 레이저의 출력 특성)

  • Ko, Myeong Ock;Kim, Namje;Han, Sang-Pil;Park, Kyung Hyun;Lee, Bong Wan;Jeon, Min Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • We report the characterization of a wavelength-swept laser (WSL) using a polygon-based wavelength scanning filter and two semiconductor optical amplifiers (SOAs). The output intensity and scanning bandwidth of the WSL depend on the position of the two SOAs in the laser cavity and the coupling ratio of the output fiber coupler. The outputs of the WSL are characterized for coupling ratios of 10%, 30%, 50%, 70%, and 90% for the output fiber coupler. In the setup in which the output fiber coupler is located between the two SOAs, high output power and wide scanning bandwidth can be achieved with an optimized configuration. Using the optimized configuration of the WSL, the intensity increases with the coupling ratio. These results can be used to construct an optimized WSL using the polygon-based wavelength scanning filter.

Theoretical modeling and analysis of thulium doped fluoride fiber amplifier at 1.47 $\mu\textrm{m}$ band amplification (툴륨이 첨가된 플루오르 계열의 광섬유 증폭기의 1.47$\mu\textrm{m}$ 증폭 대역에 대한 모델링과 분석에 대한 연구)

  • 이원재;민범기;박재형;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.171-178
    • /
    • 2000
  • We present a numerical model which enables to analyze $1.47mu$m amplification band characteristics for thulium doped fluoride fiber amplifiers. We focused on upconversion pumping scheme, thus many transitions affecting $1.47mu$m band amplification was considered simultaneously. Backward propagating waves and transverse mode were also considered in the model. The parameters for modeling were then acquired using published experimental data and related theories such as Judd-Ofelt theory for radiative transition, empirical energy gap law for non-radiative transition, and McCumber relations for cross-sections. The simulation showed well-matched results with experiment and internal dynamics. amics.

  • PDF

Opticsal Characteristics of Bismuth-doped Aluminosilicate Glass Codoped with Li and Ge (Bi 첨가 알루미노실리케이트 유리에서 Li 및 Ge 공첨가가 광 특성에 미치는 영향)

  • Seo, Young-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.221-225
    • /
    • 2007
  • The possibility of improving amplification characteristics and lowering the melting point of bismuth-doped aluminosilicate glass as a new amplification material, which has broadband near-infrared emission at 1300 nm regions, was investigated. Spectroscopic analysis of bismuth-doped aluminosilicate glass shows that the addition of an alkali metal oxide, $Li_{2}O$ increases FWHM of fluorescence spectrum but decreases fluorescence intensity, while $GeO_{2}$ composition increases both FWHM of fluorescence spectrum and fluorescence intensity. Also, excellent optical amplification gain characteristics in a $GeO_{2}$-added sample were observed.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

A 4-bit optical true time-delay for phased array antennas using 2×2 optical MEMS switches and fiber-optic delay lines (2×2 광 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 4-비트 광 실시간 지연선로)

  • 정병민;윤영민;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.385-390
    • /
    • 2004
  • In this paper, we designed a 4-bit optical true time-delay(TTD) for phased array antennas(PAAs), which is composed of a wavelength-fixed optical source, 2 ${\times}$ 2 optical MEMS switches, and fiber-optic delay lines. A 4-bit TTD with a unit time delay difference of 6 ps for 10-GHz PAAs has been implemented. Measurement results on time delay show an error of -0.4 ps at maximum, corresponding to a radiation angle error of less than 1.63$^{\circ}$. Thus, the TTD implemented in this research performs in excellent agreement with theory. Each TTD line, composed of MEMS switches and fiber-optic delay lines, connected to the corresponding antenna element has insertion loss in between 1.36 ㏈ and 2.40 ㏈ depending upon the setup of the switches. On the other hand, the insertion loss difference between TTD lines was 0.32 ㏈ at maximum for a fixed radiation angle. The TTD structure proposed in this paper might be more reliable and economical than those previously proposed using tunable wavelength sources if proper power equalization either with gain control of RF amplifiers or variable attenuators is achieved.

Constant inversion black box model of EDFAs including various loss mechanisms (Loss mechanism을 고려한 밀도 반전이 고정된 EDFA의 black box 모델링에 대한 연구)

  • 민범기;이원재;박재형;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.205-211
    • /
    • 2001
  • We propose a constant inversion black box model of erbium-doped fiber amplifiers (EDFAs) for exact performance predictions for EDFAs operated in the gain-flattened condition. The validity of the newly proposed model was experimentally verified by predicting the performance of EDFAs for the L band, within 1.9% required pump power discrepancy. The role of ion pairing effects on the power conversion efficiency is also discussed. ussed.

  • PDF