• 제목/요약/키워드: optical energy gap

검색결과 456건 처리시간 0.028초

물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가 (Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process)

  • 윤강섭;구혜경;강우승;김선재
    • Corrosion Science and Technology
    • /
    • 제11권2호
    • /
    • pp.65-69
    • /
    • 2012
  • One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu;Wang, Baisheng;Su, Ronghua;Zhang, Ao;Wang, Fuqiang;Shuai, Yong
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.475-485
    • /
    • 2022
  • Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.

Effects of High Neutral Beam Energy on the Properties of Amorphous Carbon Films

  • 이동혁;장진녕;권광호;유석재;이봉주;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.477-477
    • /
    • 2012
  • The effects of argon neutral beam (NB) energy on the amorphous carbon (a-C) films were investigated, while the a-C films were deposited by neutral particle beam assisted sputtering (NBAS) system. The deposition characteristics of these films were studied as a function of NB energy (or reflector bias voltage). The film structures were investigated by Raman spectroscopy. The hardness was measured by nano-indentation tests and the optical band gap was measured by UV-visible spectroscopy.

  • PDF

Use of High-Temperature Gas-Tight Electrochemical

  • Park, Jong-Hee;Beihai Ma;Park, Eun-Tae
    • The Korean Journal of Ceramics
    • /
    • 제4권2호
    • /
    • pp.103-113
    • /
    • 1998
  • By using a gas-tight electrochemical cell, we can perform high-temperature coulometric titration and measure electronic transport properties to determine the elecronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilitized zirconia(YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressure ($pO_2=10^{-35}$ to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria $(Ca-CeO_2 \;and\; CeO_2)$, copper oxides and copper-oxide-based ceramic superconductors, transition metal oxides, $SrFeCo_{0.5}O_x,\; and \;BaTiO_2$.

  • PDF

저온에서 증착한 CdSe막의 구조적 및 전기적 특성 (The Structural and Electrical Properties of CdSe Films Deposited at Low Temperature)

  • 박기철;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.776-781
    • /
    • 2010
  • CdSe films were deposited on glass substrates (CdSe/glass) by thermal evaporation. Substrate temperature was lowered by cooling substrate holder with liquid nitrogen. Substrate temperatures were $200^{\circ}C$, $0^{\circ}C$ and $-40^{\circ}C$. The crystallographic properties and surface morphologies of the CdSe/glass films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical and electrical properties of the films were investigated by dependence of energy gap, photosensitivity and resistivity on the substrate temperature. CdSe/glass showed energy gap of ~1.72 eV regardless of substrate temperature. The resistivity of the films decreased to $0.5{\Omega}cm$ by lowering the substrate temperature to $-40^{\circ}C$. The CdSe/glass films prepared at $0^{\circ}C$ showed the highest photosensitivity among the films in this study.

$FeSi_2$ 박막 홀 효과의 온도의존성 (Hall Effect of $FeSi_2$ Thin Film by Temperture)

  • 이우선;김형곤;김남오;정헌상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.230-233
    • /
    • 2001
  • FeSi2/Si Layer were grown using FeSi2, Si wafer by the chemical transport reactio nmethod. The directoptical energy gap was found to be 0.871eV at 300 K. The Hall effect is a physical effect arising in matter carrying electric current inthe presence of a magnetic field. The effect is named after the American physicist E. H. Hall, who discovered it in 1879. IN this paper, we study electrical properties of FeSi2/Si layer. And then we measured Hall coefficient Hall mobility, carrier density and Hall voltage according to variation magnetic field and temperature, Because of important part for it applicationVarious phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

$FeSi_2$ 박막 홀 효과의 자계의존성 (Hall Effect of $FeSi_2$ Thin Film by Magnetic Field)

  • 이우선;김형곤;김남오;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.234-237
    • /
    • 2001
  • FeSi2/Si Layer were grown using FeSi2, Si wafer by the chemical transport reactio nmethod. The directoptical energy gap was found to be 0.871eV at 300 K. The Hall effect is a physical effect arising in matter carrying electric current inthe presence of a magnetic field. The effect is named after the American physicist E. H. Hall, who discovered it in 1879. IN this paper, we study electrical properties of FeSi2/Si layer. And then we measured Hall coefficient Hall mobility,carrier density and Hall voltage according to variation magnetic field and temperature, Because of important part for it applicationVarious phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

FeSi$_2$박막 흘 효과의 자계의존성 (Hall Effect of FeSi$_2$ Thin Film by Magnetic Field)

  • 이우선;김형곤;김남오;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.234-237
    • /
    • 2001
  • FeSi$_2$/Si Layer were grown using FeSi$_2$, Si wafer by the chemical transport reaction method. The directoptical energy gap was found to be 0.871ev at 300 K. The Hall effect is a physical effect arising in matter carrying electric current in the presence of a magnetic field. The effect is named after the American physicist E. H. Hall, who discovered it in 1879. In this paper, we study electrical properties of FeSi$_2$/Si layer And then we measured Hall coefficient Hall mobility, carrier density and Hall voltage according to variation magnetic field and temperature, Because of important Part for it application Various phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

$FeSi_2$박막 홀 효과의 온도의존성 (Hall Effect of $FeSi_2$ Thin Film by Temperature)

  • 이우선;김형곤;김남오;정헌상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.230-233
    • /
    • 2001
  • FeSi$_2$ Layer were grown using FeSi$_2$, Si wafer by the chemical transport reaction method. The directoptical energy gap was found to be 0.87leV at 300 K. The Hall effect is a Physical effect arising in matter carrying electric current in the presence of a magnetic field. The effect is named after the American physicist E.H. Hall, who discovered it in 1879. In this paper, we study electrical properties of FeSi$_2$/Si layer. And then we measured Hall coefficient Hall mobility, carrier density and Hall voltage according to variation magnetic field and temperature, Because of important part for it application various phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

GaP 단결정의 성장과 특성에 관하여 (On the Growth and Properties of GaP Single Crystals)

  • 김선태;문동찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 춘계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 1992
  • The GaP crystals are growth by Synthesis Solute Diffusion(SSD) method and its properties are investigated. Etch pits density along vertical direction of ingot is increased from 3.8${\times}$10$^4$cm$\^$-2/ of first freeze to 2.3${\times}$10$\^$5/cm$\^$-2/ of last freeze part. The carrier concentration and mobilities are measured to 197.49$\textrm{cm}^2$/V. sec and 6.75${\times}$10$\^$15/cm$\^$-3/ at room temperature. The temperature dependence of optical energy gap is empilically fitted to E$\_$g/(T)=2.3383-(6.082${\times}$10$\^$-4/T${\times}$/(373.096+T)[eV]. Photo-luminescence spectra measured at low temperature are consist with sharp line-spectra near band-gap energy and radiative recombination between shallow Si-donor to Zn-acceptor and its phonon reprica, and broad emission. The infrared absorption in GaP is cause to phonon coupling modes of TO, LO, LA, TA$_1$, TA$_2$and vibration modes of Ga$_2$O, Si-donor and Zn-acceptor, respectively.

  • PDF