• Title/Summary/Keyword: optical disk drive system

Search Result 84, Processing Time 0.027 seconds

Asymptotic Disturbance Rejection using a Disturbance Observer in the Track-Following Control System of a High-Speed Optical Disk Drive (고배속 광디스크 드라이브 트랙 추종 제어 시스템에서의 외란 관측기를 이용한 점근적 외란 제거)

  • 유정래;문정호;진경복;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2004
  • To obtain a good tracking performance in an optical disk drive servo system, it is essential to attenuate periodic disturbances caused by eccentric rotation of the disk. As an effective control scheme for enhancing disturbance attenuation performance, disturbance observers (DOBs) have been successfully applied to the track-following servo system of optical disk drives. In disk drive systems, the improvement of data transfer rate has been achieved mainly by the increase of disk rotational speed, which leads to the increase of the disturbance frequency. Conventional DOBs are no longer effective in disk drive systems with a high-speed rotation mechanism because the performance of conventional DOBs is severely degraded as the disk rotational frequency increases. This paper proposes a new DOB structure for effective rejection of the disturbance in optical disk drives with a very high rotation speed. Asymptotic disturbance rejection is achieved by adopting a band-pass filter in the DOB structure, which is tuned based on the information on the disturbance frequency. In addition, performance sensitivity of the proposed DOB to changes in disk rotational frequency is analyzed. The effectiveness of the proposed DOB is verified through simulations and experiments using a DVD-ROM drive.

Modeling of Feeding System for Optical Disk Drive and Nonlinear Dynamic Analysis of it (광 디스크 드라이브 이송계의 모델링 및 비선형 특성 분석)

  • Lee, Kwang-Hyun;Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.75-78
    • /
    • 2004
  • In an optical disk drive, a feeding system which is used to move the optical pick-up system to the target position and the proper control scheme of it are important in random access performance. Since the effect of control is directly affected by the modeling precision of the real system, the precise modeling to the real system should be acquired. Although a simple linear order modeling to the feeding system of an optical disk drive is useful in understanding of the overall dynamic characteristics, the dynamic characteristics which are belongs to the nonlinear area cannot be predicted correctly. Furthermore, the feeding system of an optical disk drive has many nonlinear characteristics such as a nonlinear friction and backlash. For this reason, the understanding of the nonlinear properties in the feeding system is very important. In this paper, the nonlinear items of the feeding system, friction and backlash, are introduced and the effect of it are investigated. Finally, the mathematical model considering the nonlinear properties is compared to the real system, and some comments of it are given.

  • PDF

Dynamic Analysis of an Optical Disk Drive with Dynamic Vibration Absorber (동흡진기를 채용한 광 디스크 드라이브의 동적 해석)

  • 김남웅;김국원;황효균;김동규;이진우;김외열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.867-870
    • /
    • 2002
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber (DVA). In this paper, we analyze the dynamic behavior of $DVD\pmRW$ combo drive system with DVA through 12_dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio are obtained from the analysis.

  • PDF

A Study on Vibration Reduction of an Optical Disk Drive with the Misaligned Axis of Rotation (회전축 정렬불량 광디스크 드라이브의 진동 저감에 관한 연구)

  • 강봉진;정태은;신효철;오주환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.122-130
    • /
    • 2004
  • In a high-speed and wide operating field optical disk drive, the vibration problem is one of the most important factors to be considered for reliable performance. And a disk misaligned with axis of rotation is a major source of vibration in optical disk drive. Furthermore, this vibration disturbance of the disk spindle system causes failure in the reading and writing process. So to solve this vibration problem, the vibration absorber using rubber mount has been introduced in recent years. In this paper, we have analyzed the simple optical disk drive model with dynamic vibration absorber through dynamic analysis of 12-dof by Recurdyn program and obtained optimal mass and frequency ratios of dynamic vibration absorber of dynamic vibration absorber and the optimal frequency ratio.

Vibration Reduction of an Optical Disk Drive with a Dynamic Vibration Absorber (동흡진기를 사용한 광 디스크 드라이브의 진동저감)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.529-536
    • /
    • 2006
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber(DVA). In this paper, we analyze the dynamic behavior of $DVD{\pm}RW$ combo drive system with DVA through 12-dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio for the DVA are obtained from the analysis. The DVA are fabricated based on the analysis and its usefulness is confirmed.

Track-following Control under Disk Surface Defect of Optical Disk Drive Systems (광디스크 드라이브의 디스크 표면 결함에 대한 트래킹 제어)

  • Jeong, Dong-Seul;Lee, Joon-Seong;Chung, Chung-Choo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.56-64
    • /
    • 2006
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives to reject disk runout was recently proposed based on both Coprime Factorization(CF) and Zero Phase Error Tracking(ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo systems can detect only racking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Therefore, it is very effective in runout control. Furthermore, this method can be applied to defective optical disk like surface defects on disk. Numerical simulation and experimental result show the proposed method effective.

  • PDF

Shock Response Analysis of the Optical Disk Drive in Consideration of Disk and Pick up (디스크와 픽업을 고려한 광디스크 드라이브의 충격응답해석)

  • Shin, Eun-Jung;Chang, Young-Bae;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1261-1267
    • /
    • 2004
  • As the optical disk drives are designed for portable and hostile environment, they have a possibility to miss the track and not to read the data. The shock response of optical disk drives must be analyzed. This research shows the shock response analysis of the optical disk drive. The optical disk drive is modeled as the lumped parameter system in consideration of the pickup and the disk. The lumped parameter model is compared with finite element model in order to verify results. Finally, shock responses are compared with the change of the shock magnitude and the duration.

Shock Analysis of Optical Disk Drives (광디스크 드라이브의 충격해석)

  • 홍석준;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.412-417
    • /
    • 2003
  • As optical disk drives become designed for portable and hostile environment, higher storage density and smaller size, optical disk drives have a possibility to miss the track and not to read the data. This paper presents the modeling of an optical disk drive as 3-DOF system. Optical disk drives are tested with a linear drop test device and their results are compared with simulation results in order to verify the shock analysis. Finally, this paper shows shock response of a optical disk drive with changes of parameters

  • PDF

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF

Design And Optimization Of Actuator For Micro Optical Disk Drive Using Response Surface Methodology (반응표면법을 이용한 초소형 광디스크 드라이브 구동기의 최적화 및 디자인)

  • 우기석;이동주;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.755-761
    • /
    • 2003
  • Recently, the development of mobile devices demands information storage systems to use micro drive devices and cheap media. These should have several characteristics, for example, the subminiature of size, the robustness of shock, the minimum of cost and power consumption, and the removability of multiple applications. A conventional optical disk drive is more suitable for these specifications than the others. The optical storage system of the new generation to use a blue laser and a high numerical aperture (NA) is the perfect candidate for micro optical disk drives. In this paper, the micro actuator that can be applied to a micro optical disk drive is designed by response surface methodology to use a structural analysis and an electro-magnetic analysis. Based on above results, the coarse actuator and fine actuator are designed and improved from the point of view of the size and the power. Consequently, the designs of a micro actuator are proposed through these courses.

  • PDF