• Title/Summary/Keyword: optical dielectric function

Search Result 52, Processing Time 0.03 seconds

Optical dielectric function of impurity doped Quantum dots in presence of noise

  • Ghosh, Anuja;Bera, Aindrila;Ghosh, Manas
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.13-25
    • /
    • 2017
  • We examine the total optical dielectric function (TODF) of impurity doped GaAs quantum dot (QD) from the viewpoint of anisotropy, position-dependent effective mass (PDEM) and position dependent dielectric screening function (PDDSF), both in presence and absence of noise. The dopant impurity potential is Gaussian in nature and noise employed is Gaussian white noise that has been applied to the doped system via two different modes; additive and multiplicative. A change from fixed effective mass and fixed dielectric constant to those which depend on the dopant coordinate manifestly affects TODF. Presence of noise and also its mode of application bring about more rich subtlety in the observed TODF profiles. The findings indicate promising scope of harnessing the TODF of doped QD systems through expedient control of site of dopant incorporation and application of noise in desired mode.

Dielectric Function Analysis of Cubic CdSe Using Parametric Semiconductor Model (변수화 반도체 모델을 이용한 Cubic Zinc-blonde CdSe의 유전함수 분석)

  • Jung, Y.W.;Ghong, T.H.;Lee, S.Y.;Kim, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • ZnCdSe alloy semiconductor was widely used for the optoelectronic device. And CdSe is the end-point in this material. In this work, we measured the dielectric function spectrum of cubic CdSe with Vacuum Ultra Violet spectroscopic ellipsometry and analysed this data with parametric model. As a result, we observed some of transition energy point over 6 eV and obtained the database for dielectric function spectrum, which could be used for temperature or alloy composition dependence study on optical property of CdSe.

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.196-199
    • /
    • 2012
  • CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

Above bandgap optical properties of ZnS grown by hot-wall epitaxy

  • Lee, M.S.;Koo, M.S.;Kim, T.J.;Kim, Y.D.;Yoo, Y.M.;O, B.;Choi, Y.D.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.112-115
    • /
    • 1999
  • The real ($\varepsilon$1) and imaginary ($\varepsilon$2) parts of the dielectric function of ZnS have been measured by spectroscopic ellipsometry (SE) in the 3.7-6.0 eV photon-energy range at room temperature. The obtained dielectric function spectra reveal distinct structures at energies E0/(E0+$\Delta$0) and E1 critical points. The spectrum after chemical treatment to remove surface oxide overlayer showed that these data seem to be the best representation of the dielectric function of ZnS, having the largest $\varepsilon$2 value at E1 peak region reported so far by SE. Dielectric-related optical constants of ZnS, such as the complex refractive indices (n+n=ik), absorption coefficient, and reflectance, are also presented.

  • PDF

Study of the Correlation of Plasma Resonance and the Refractive Index to Dielectric Dispersion in the Complex Plane

  • Zhou, Xiao-Yong;Shen, Yan;Hu, Er-Tao;Chen, Jian-Bo;Zhao, Yuan;Sheng, Ming-Yu;Li, Jing;Zheng, Yu-Xiang;Zhao, Hai-Bin;Chen, Liang-Yao;Li, Wei;Jiang, Xun-Ya;Lee, Young-Pak;Lynch, David W.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • Based on the dispersive feature of the dielectric function of noble metals and the wave vector conservation in physics, both the plasma effect and the complex refractive index, which are profoundly correlated to the complex dielectric function and permeability, have been studied and analyzed. The condition to induce a bulk or a surface plasma in the visible region will not be satisfied, and there will be one solution for the real and the imaginary parts of the refractive index, restricting it only to region I of the complex plane. The results given in this work will aid in understanding the properties of light transmission at the metal/dielectric interface as characterized by the law of refraction in nature.

Study on critical point of ZnCdSe by using Fourier analysis (Fourier 변환을 이용한 ZnCdSe 전이점 연구)

  • Yoon, J.J.;Ghong, T.H.;Kim, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.458-462
    • /
    • 2007
  • Spectroscopic ellipsometry is an excellent technique for determining dielectric function. To obtain critical point energy, standard analytic critical point expression is used conventionally for second derivatives of dielectric function which might increase high frequency noise than signal. However, reciprocal-space analysis offers several advantages for determining critical point parameters in optical and other spectra, for example the separation of baseline, information, and high frequency noise in low-, medium-, high-index Fourier coefficient, respectively. We used reciprocal Fourier analysis for removing noise and determining critical point of ZnCdSe alloy.

Parametrization of the Optical Constants of AlAsxSb1-x Alloys in the Range 0.74-6.0 eV

  • Kim, Tae Jung;Byun, Jun Seok;Barange, Nilesh;Park, Han Gyeol;Kang, Yu Ri;Park, Jae Chan;Kim, Young Dong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.359-364
    • /
    • 2014
  • We report parameters that allow the dielectric functions ${\varepsilon}={\varepsilon}_1+i{\varepsilon}_2$ of $AlAs_xSb_{1-x}$ alloys to be calculated analytically over the entire composition range $0{\leq}x{\leq}1$ in the spectral energy range from 0.74 to 6.0 eV by using the dielectric function parametric model (DFPM). The ${\varepsilon}$ spectra were obtained previously by spectroscopic ellipsometry for x = 0, 0.119, 0.288, 0.681, 0.829, and 1. The ${\varepsilon}$ data are successfully reconstructed and parameterized by six polynomials in excellent agreement with the data. We can determine ${\varepsilon}$ as a continuous function of As composition and energy over the ranges given above, and ${\varepsilon}$ can be converted to complex refractive indices using a simple relationship. We expect these results to be useful for the design of optoelectronic devices and also for in situ monitoring of AlAsSb film growth.

Dielectric and Optical Properties of Amorphous Hafnium Indium Zinc Oxide Thin Films on Glass Substrates

  • Shin, Hye-Chung;Seo, Soon-Joo;Denny, Yus Rama;Lee, Kang-Il;Lee, Sun-Young;Oh, Suhk-Kun;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.225-225
    • /
    • 2011
  • The dielectric and optical properties of GaInZnO (GIZO), HfInZnO (HIZO) and InZnO (IZO) thin films on glass by RF magnetron sputtering method were investiged using reflection electron energy loss spectroscopy (REELS). The band gap was estimated from the onset values of REELS spectra. The band gaps of GIZO, HIZO and IZO thin films are 3.1 eV, 3.5 eV and 3.0 eV, respectively, Hf and Ga incorporated into IZO results in an increase in the energy band gap of IZO by 0.5 eV and 0.1 eV. The dielectric functions were determined by comparing the effective cross section determined from experimental REELS with a rigorous model calculation based on the dielectric response theory, using available software package, good agreement between the experimental and fitting results gives confidence in the accuracy of the determined dielectric function. The main peak of Energy Loss Function (ELF) obtained from IZO shows at 18.42 eV, which shifted to 19.43 eV and 18.15 eV for GIZO and HIZO respectively, because indicates the corporation of cation Ga and Hf in the composition. The optical properties represented by the dielectric function e, the refractive index n, the extinction coefficient k, and the transmission coefficient, T of HIZO and IZO thin films were determined from a quantitative analysis of REELS. The transmission coefficient was increased to 93% and decreased to 87% in the visible region with the incorporation of Hf and Ga in the IZO compound.

  • PDF

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.

Parametric modeling for the dielectric function of $Cd_{0.77}Mg_{0.23}Te$ alloy film

  • Ihn, Yong-Sub;Kim, Tae-Jung;Kim, Young-Dong
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.4
    • /
    • pp.149-152
    • /
    • 2002
  • We performed the modeling of the dielectric functions of C $d_{0.77}$M $g_{0.23}$Te by using parametric semiconductor model. Parametric model describes the analytic dielectric function as the summation of several energy-bounded Gaussian-broadened polynomials and provides a reasonably well parameterized function which can accurately reproduce the optical constants of semiconductor materials. We obtained the values of fitting parameters of the Mg composition 0.23 in the parametric model. From these parameters we could remove interference oscillations to obtain the dielectric function of C $d_{0.77}$M $g_{0.23}$Te alloy film for full 0.5-6.0 eV energy range.y range.

  • PDF