Browse > Article
http://dx.doi.org/10.3807/JOSK.2013.17.1.027

Study of the Correlation of Plasma Resonance and the Refractive Index to Dielectric Dispersion in the Complex Plane  

Zhou, Xiao-Yong (Department of Optical Science and Engineering, Fudan University)
Shen, Yan (Department of Optical Science and Engineering, Fudan University)
Hu, Er-Tao (Department of Optical Science and Engineering, Fudan University)
Chen, Jian-Bo (Department of Optical Science and Engineering, Fudan University)
Zhao, Yuan (Department of Optical Science and Engineering, Fudan University)
Sheng, Ming-Yu (Department of Optical Science and Engineering, Fudan University)
Li, Jing (Department of Optical Science and Engineering, Fudan University)
Zheng, Yu-Xiang (Department of Optical Science and Engineering, Fudan University)
Zhao, Hai-Bin (Department of Optical Science and Engineering, Fudan University)
Chen, Liang-Yao (Department of Optical Science and Engineering, Fudan University)
Li, Wei (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences)
Jiang, Xun-Ya (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences)
Lee, Young-Pak (Department of Physics, Hanyang University)
Lynch, David W. (Department of Physics, Iowa State University)
Publication Information
Journal of the Optical Society of Korea / v.17, no.1, 2013 , pp. 27-32 More about this Journal
Abstract
Based on the dispersive feature of the dielectric function of noble metals and the wave vector conservation in physics, both the plasma effect and the complex refractive index, which are profoundly correlated to the complex dielectric function and permeability, have been studied and analyzed. The condition to induce a bulk or a surface plasma in the visible region will not be satisfied, and there will be one solution for the real and the imaginary parts of the refractive index, restricting it only to region I of the complex plane. The results given in this work will aid in understanding the properties of light transmission at the metal/dielectric interface as characterized by the law of refraction in nature.
Keywords
Snell's law; Metal optics; Plasma resonance effect; Refractive index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. W. Shirley, "An early experimental determination of Snell's law," Am. J. Phys. 19, 507-508 (1951).   DOI
2 S. A. Kovalenko, "Descartes-Snell law of refraction with absorption," Semiconductor Physics, Quantum Electronics & Optoelectronics 4, 214-218 (2001).
3 M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).
4 V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of $\varepsilon$ $and\mu$," Sov. Phys. Uspekhi 10, 509-514 (1968).   DOI   ScienceOn
5 H. Shin and S. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. lett. 96, 073907 (2006).   DOI   ScienceOn
6 R. A. Depine and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Technol. Lett. 41, 315-316 (2004).   DOI   ScienceOn
7 G. Dolling, M. W. Klein, M. Wegener, A. Schadle, B. Kettner, S. Burger, and S. Linden, "Negative beam displacements from negative-index photonic metamaterials," Opt. Express 15, 14219-14227 (2007).   DOI
8 J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).   DOI   ScienceOn
9 T. P. Meyrath, T. Zentgraf, and H. Giessen, "Lorentz model for metamaterials: optical frequency resonance circuits," Phys. Rev. B 75, 205102 (2007).   DOI   ScienceOn
10 J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-379 (2008).   DOI   ScienceOn
11 M. Wegener, G. Dolling, and S. Linden, "Plasmonics: backward waves moving forward," Nature Materials 6, 475-476 (2007).   DOI   ScienceOn
12 F. Wooten, Optical Properties of Solids (Academic Press, New York and London, 1972).
13 S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
14 F. Forstmann and R. R. Gerhardts, Metal Optics, Vol. 109 of Springer Tracts in Modern Physics (Springer Verlag, Berlin, Germany, 1986).
15 P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).   DOI
16 H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Vol. 88 of Springer Tracts in Modern Physics (Springer Verlag, Berlin, Germany, 1980).
17 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer Verlag, Berlin, Germany, 1988).
18 D. E. Aspnes, E. Kinsbron, and D. D. Bacon, "Optical properties of Au: sample effects," Phys. Rev. B 21, 3290- 3299 (1980).   DOI
19 G. R. Parkins, W. E. Lawrence, and R. W. Christy, "Intraband optical conductivity $\sigma$($\omega$,T) of Cu, Ag, and Au: contribution from electron-electron scattering," Phys. Rev. B 23, 6408-6416 (1981).   DOI
20 L. Y. Chen and D. W. Lynch, "Effect of liquids on the Drude dielectric function of Ag and Au films," Phys. Rev. B 36, 1425-1431 (1987).   DOI   ScienceOn
21 T. Turbadar, "Complete absorption of light by thin metal films," Proc. Phys. Soc. Lond. 73, 41-44 (1959).
22 T. Turbadar, "Complete absorption of plane polarized light by thin metallic films," J. Mod. Opt. 11, 207-210 (1964).
23 A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Physik 216, 398-410 (1968).   DOI
24 E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z. Physik 241, 313-324 (1971).   DOI
25 R. A. Depine and A. Lakhtakia, "A simple and efficient approach to train artificial neural networks using a genetic algorithm to calculate the resonant frequency of an RMA on thick substrate," Microwave Opt. Technol. Lett. 41, 315-316 (2004).   DOI   ScienceOn
26 J. L. Garcia-Pomar and M. Nieto-Vesperinas, "Transmission study of prisms and slabs of lossy negative index media," Opt. Express 12, 2081-2095 (2004).   DOI
27 V. M. Shalaev, "Optcal negative-index metamaterials," Nature Photonics 1, 41-48 (2007).   DOI   ScienceOn
28 M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002).   DOI   ScienceOn
29 A. V. Kildishev, V. P. Drachev, U. K. Chettiar, D. Werner, D. H. Kwon, and V. M. Shalaev, comment at (2006).
30 J. Wei and M. Xiao, "Electric and magnetic losses and gains in determining the sign of refractive index," Opt. Commun. 270, 455-464 (2007).   DOI   ScienceOn
31 J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New York, USA, 1999).
32 L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, New York, USA, 1984).
33 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, London, UK, 1985).