• Title/Summary/Keyword: optical current sensor

Search Result 242, Processing Time 0.052 seconds

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

Current-induced Phase Demodulation Using a PWM Sampling for a Fiber-optic CT

  • Park, Hyoung-Jun;Lee, June-Ho;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.240-244
    • /
    • 2010
  • In this work, we used PWM sampling for demodulation of a fiber-optic interferometric current transformer. The interference signal from a fiber-optic CT is sampled with PWM triggers that produce a 90-degree phase difference between two consecutively sampled signals. The current-induced phase is extracted by applying an arctangent demodulation and a phase unwrapping algorithm to the sampled signals. From experiments using the proposed demodulation, we obtained phase measurement accuracy and a linearity error, in AC current measurements, of ~2.35 mrad and 0.18%, respectively. The accuracy of the proposed method was compared with that of a lock-in amplifier demodulation, which showed only 0.36% difference. To compare the birefringence effects of different fiber-optic sensor coils, a flint glass fiber and a standard single-mode fiber were used under the same conditions. The flint glass fiber coil with a Faraday rotator mirror showed the best performance. Because of the simple hardware structure and signal processing, the proposed demodulation would be suitable for low-cost over-current monitoring in high voltage power systems.

The Study of the Optical Current Sensor Using Magneto-Optic Effects (자기광학효과를 이용한 광전류센서에 관한 연구)

  • 전재일;이정수;송시준;정철우;박원주;이광식;김정배;김민수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.47-53
    • /
    • 2003
  • In this paper, we described the laboratory layout of the optical CT in connection with the measurement of large current based on Magneto-Optic Effects. It was used He-Ne laser for light source and was used PIN-Photodiode for light receiver. The sensing section was organized by winding optical fiber around conductor on the concept that the rotation angle of polarizing axis by Faraday Effect is proportional to the applied current in to conduction. The optical signal passed through optical fiber sensor was induced to analyzer arranged in the direction of $\theta$ for input polarization, and then analyzed its rotation angle and researched on operating characteristics of optical CT for 60[Hz] AC current measurement from l00[A] to 1000[A] was carried out. In this results, the output signals induced linearly with the current and proved that the intensity is increased with increasing turns of fiber through output differences which in accordance with turns of fiber and we verified that there is not only difference of the output with the medium between electric field and optical fiber, but also the lineality. Measuring the references and output intensities of the optical CT, ratio errors were within $\pm$7%. This confirmed that error rate will be improved by each medium and turns.

The Study of the Optical Fiber Current Sensor Using Faraday Effect (Faraday 효과를 이용한 광섬유 전류센서에 관한 연구)

  • 이정수;송시준;전재일;박원주;이광식;김정배;송원표
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.229-232
    • /
    • 2002
  • In this paper, we described the laboratory layout of the optical CT in connection with the measurement of large current for the GIS. The aim of this study is the development and application of optical CT based on Faraday effect. It was used He-Ne laser for light source (633nm) and was used PIN-Photodiode for light receiver. The laser source passes through optical fiber in single mode. We used the polarizer to polarize the light source and the beam splitter to divide the output light, and the optical fiber is connected for the measuring the angle polarized in the magnetic field.

  • PDF

Real-time urine monitoring system for intensive care patient using optical sensor (광센서를 이용한 실시간 중환자 요량감시 장치)

  • Kim, Jong-Myoung;Lee, Jin-Young;Hong, Joo-Hyun;Lim, Seung-Woon;Cha, Eun-Jong;Lee, Tae-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.81-85
    • /
    • 2008
  • This paper addressed real-time urine monitoring device for intensive care patients. The device was developed to detect and count each urine drop using optical sensor and calculate the current urine output volume and its hourly rate. In experiment, the water volume scale of drainage bottle was observed and compared with the count of the device so that the volume of each drop was found to vary with the dropping rate per minute. From this measurement, the relationship equation was derived to estimate the total water volume from the drop rate (correlation coefficient : r= 0.99). The developed device could be applied to count patient's urine drop successfully. Therefore, this device can be used to monitor intensive care patient's urine status in real-time.

BER Analysis of Coherent Free Space Optical Communication Systems with Holographic Modal Wavefront Sensor

  • Liu, Wei;Yao, Kainan;Huang, Danian;Cao, Jingtai;Wang, Liang;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Degradation of bit-error-rate (BER), caused by atmospheric turbulence, seriously hinders the performance of coherent Free Space Optical (FSO) communication systems. An adaptive optics system proves to be effective in suppressing the atmospheric turbulence. The holographic modal wavefront sensor (HMWFS) proposed in our previous work, noted for its fast detecting rates and insensitivity to beam scintillation, is applied to the coherent FSO communication systems. In this paper, based on our previous work, we first introduce the principle of the HMWFS in brief and give the BER of the coherent FSO with homodyne detection in theory, and then analyze the improvement of BER for a coherent FSO system based on our previous simulation works. The results show that the wavefront sensor we propose is better for weak atmospheric turbulence. The most obvious advantages of HMWFS are fast detecting rates and insensitivity to beam scintillation.

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.

A Study on the Sensor Calibration of Motion Capture System using PSD Sensor to Improve the Accuracy (PSD 센서를 이용한 모션캡쳐센서의 정밀도 향상을 위한 보정에 관한 연구)

  • Choi, Hun-Il;Jo, Yong-Jun;Ryu, Young-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.583-585
    • /
    • 2004
  • In this paper we will deal with a calibration method for low cost motion capture system using psd(position sensitive detection) optical sensor. To measure the incident direction of the light from LED emitted marker, the PSD is used the output current ratio on the electrode of PSD is proportional with the incident position of the light focused by lens. In order to defect the direction of the light, the current output is converted into digital voltage value by opamp circuits peak detector and AD converter with the digital value the incident position is measured. Unfortunately, due to the non-linearly problem of the circuit poor position accuracy is shown. To overcome such problems, we compensated the non-linearly by using least-square fitting method. After compensated the non-linearly in the circuit, the system showed more enhanced position accuracy.

  • PDF

Fiber-Optic Current Sensor Using a Faraday Rotator Glass Fiber Sensor Coil (Faraday Rotator Glass 광섬유 전류센서)

  • 김기혁;송민호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.28-33
    • /
    • 2004
  • We developed a fiber-optic CT for large current monitoring in power systems. We used a FRG fiber sensor coil to suppress CT output degradation caused by linear birefringence, and different optical sources were used to compare their noise characteristics. From the experiments, we obtained output variation less than $\pm$0.4(%) when the sensor coil suffered mechanical perturbations, and the ASE source showed -23(㏈) less noise in the output than singlemode laser diode.