• Title/Summary/Keyword: optical constant

Search Result 675, Processing Time 0.031 seconds

Optical and dielectric properties of nano BaNbO3 prepared by a combustion technique

  • Vidya, S.;Mathai, K.C.;John, Annamma;Solomon, Sam;Joy, K.;Thomas, J.K.
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.141-153
    • /
    • 2013
  • Nanocrystalline Barium niobate ($BaNbO_3$) has been synthesized by a novel auto-igniting combustion technique. The X-Ray diffraction studies reveals that $BaNbO_3$ posses a cubic structure with lattice constant $a=4.071{\AA}$. Phase purity and structure of the nano powder are further examined using Fourier-Transform Infrared and Raman spectroscopy. The average particle size of the as prepared nano particles from the Transmission Electron Microscopy is 20 nm. The UV-Vis absorption spectra of the samples are recorded and the calculated average optical band gap is 3.74eV. The sample is sintered at an optimized temperature of $1425^{\circ}C$ for 2h and attained nearly 98% of the theoretical density. The morphology of the sintered pellet is studied with Scanning Electron Microscopy. The dielectric constant and loss factor of a well-sintered $BaNbO_3$ at 5MHz sample is found to be 32.92 and $8.09{\times}10^{-4}$ respectively, at room temperature. The temperature coefficient of dielectric constant was $-179pp/^{\circ}C$. The high dielectric constant, low loss and negative temperature coefficient of dielectric constant makes it a potential candidate for temperature sensitive dielectric applications.

Optical, Thermal and Dielectric Properties of $B_2O_3-Al_2O_3$-SrO Glasses for Plasma Display Panel (플라즈마 디스플레이 패널을 위한 $B_2O_3-Al_2O_3$-SrO계 유리의 물리적 특성)

  • Hwang, Seong-Jin;Lee, Jin-Ho;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.33-33
    • /
    • 2007
  • In PDP industry, the dielectrics and barrier ribs have been required with low dielectric constant, low melting point and Pb-free composition due to the low power consumption, low signal delay time and the environment restriction. We were studied with $B_2O_3-Al_2O_3$-SrO glass systems about optical, thermal and dielectric properties. The glass forming region of the $B_2O_3-Al_2O_3$-SrO glass systems was narrow due to the amount of the glass former $(B_2O_3)$. The glass transition temperature (Tg) of the glasses was at $550{\sim}590^{\circ}C$. The glasses have 6~8 for the dielectric constant. Furthermore, the transmittance of the glasses was over 80% on the range of the visible ray. From the results, the glasses of the $B_2O_3-Al_2O_3$-SrO glass systems should enable to be a good candidate of the PDP devices for information display with low dielectric constant. The aim of this study is to give a fundamental result of new glass system for low dielectric constant in the information display.

  • PDF

Study on Design Parameters of LED Secondary Lens with Very Close Range (초근접 LED 2차 렌즈의 설계 변수에 관한 연구)

  • Kim, Jang Yun;Hyun, Dong Hoon;Hong, Cheol Ui
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • In this paper, the performance of a system was analyzed according to the design parameters of a LED secondary lens that can be applied at a very close range, e.g., for direct lighting or display systems. We designed the secondary lens of the very-close-range LED using an aspheric equation and analyzed its performance-particularly the angle of the beam spread, central luminous intensity, and light uniformity-with respect to the thickness of lens, radius, conic constant, and asphericity (4th). Our analysis shows that four parameters affect the performance. The simulation results indicate an optimal thickness of 1 mm and show that a larger radius yields higher performance. The optimal range for the conic constant was determined as -1.21 to -1.25, the optimal range for the asphericity was determined as 0.0047xx to 0.0049xx (4th).

NUMERICAL ANALYSIS OF A SAMPLING MODULE FOR A FAST RESPONSE EXHAUST GAS ANALYZER

  • Kim, W.S.;Lee, J.H.;Yoo, J.S.;Rhee, B.O.;Park, J.I.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • The engine behavior in a transient condition is important to not only emission regulations but also fuel economy. A fast response gas analyzer can be a useful tool to investigate exhaust gas in a transient operation. It should be designed to analyze gas concentration with a short time constant by a fast sampling module and an appropriate measuring method for each emission element. In this study, a new fast sampling module is introduced and flow analysis is performed by numerical simulation. The analysis has shown the proper operating condition and the sensitivity of the module for practical application. Calculated flow to the sampling module has $0.5{\sim}4%$ error, while backflow toward the expansion tube is expected when pressure in CP (Constant Pressure) chamber is over 0.6 bar. For a stable supply of flow to the optical cell, sample gas pressure should be in the range, $0.35{\sim}1.90$ bar, when the pressure in the CP camber and the optical cell are 0.2 bar and 0.158 bar, respectively.

Rapid and massive throughput analysis of a constant volume high-pressure gas injection system

  • Ren, Xiaoli;Zhai, Jia;Wang, Jihong;Ren, Ge
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.908-914
    • /
    • 2019
  • Fusion power shutdown system (FPSS) is a safety system to stop plasma in case of accidents or incidents. The gas injection system for the FPSS presented in this work is designed to research the flow development in a closed system. As the efficiency of the system is a crucial property, plenty of experiments are executed to get optimum parameters. In this system, the flow is driven by the pressure difference between a gas storage tank and a vacuum vessel with a source pressure. The idea is based on a constant volume system without extra source gases to guarantee rapid response and high throughput. Among them, valves and gas species are studied because their properties could influence the velocity of the fluid field. Then source pressures and volumes are emphasized to investigate the volume flow rate of the injection. The source pressure has a considerable effect on the injected volume. From the data, proper parameters are extracted to achieve the best performance of the FPSS. Finally, experimental results are used as a quantitative benchmark for simulations which can add our understanding of the inner gas flow in the pipeline. In generally, there is a good consistency and the obtained correlations will be applied in further study and design for the FPSS.

Interband optical properties in wide band gap group-III nitride quantum dots

  • Bala, K. Jaya;Peter, A. John
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.13-27
    • /
    • 2015
  • Size dependent emission properties and the interband optical transition energies in group-III nitride based quantum dots are investigated taking into account the geometrical confinement. Exciton binding energy and the optical transition energy in $Ga_{0.9}In_{0.1}N$/GaN and $Al_{0.395}In_{0.605}N$/AlN quantum dots are studied. The largest intersubband transition energies of electron and heavy hole with the consideration of geometrical confinement are brought out. The interband optical transition energies in the quantum dots are studied. The exciton oscillator strength as a function of dot radius in the quantum dots is computed. The interband optical absorption coefficients in GaInN/GaN and AlInN/AlN quantum dots, for the constant radius, are investigated. The result shows that the largest intersubband energy of 41% (10%) enhancement has been observed when the size of the dot radius is reduced from $50{\AA}$ to $25{\AA}$ of $Ga_{0.9}In_{0.1}N$/GaN ($Al_{0.395}In_{0.605}N$/AlN) quantum dot.

Optical Properties of High-k Gate Oxides Obtained by Spectroscopic Ellipsometer (분광 타원계측기를 이용한 고굴절률 게이트 산화막의 광물성 분석)

  • Cho, Yong-Jai;Cho, Hyun-Mo;Lee, Yun-Woo;Nam, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1932-1938
    • /
    • 2003
  • We have applied spectroscopic ellipsometry to investigate $high-{\kappa}$ dielectric thin films and correlate their optical properties with fabrication processes, in particular, with high temperature annealing. The use of high-k dielectrics such as $HfO_{2}$, $Ta_{2}O_{5}$, $TiO_{2}$, and $ZrO_{2}$ as the replacement for $SiO_{2}$ as the gate dielectric in CMOS devices has received much attention recently due to its high dielectric constant. From the characteristics found in the pseudo-dielectric functions or the Tauc-Lorentz dispersions, the optical properties such as optical band gap, polycrystallization, and optical density will be discussed.

  • PDF

On-Machine Measurement of an Optical Surface by Hartmann Test (하트만 방법에 의한 광학면의 기상측정)

  • 김용관;오창진;이응석;김옥현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.474-480
    • /
    • 2002
  • Aspheric optical lenses and mirrors are widely used in recent. It is more difficult to manufacture and measure the aspherical optics compared to conventional spherical ones. The interferometric optical test is common for the measurement of spherical optical surface. But the application of the interferometry to the measurement of aspheric surface is difficult because it needs a precise null corrector and very careful environmental conditions such as keeping constant temperature, humidity, atmospheric pressure and vibrations. To enhance productivity of optics manufacturing on-machine measurement and correction has been developed in this study. For practical applications, robustness of the measurement method to environments is more important. For the purpose an optical OMM(On-Machine Measurement) system has been developed using Shack-Hartmann test which has robustness to the environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by least square fitting. The measured result of the developed only system gives the maximum deviation only in 200 nm from the result measured by a commercial Fizeau interferometer Wyko 6000.

  • PDF

Pulse Broadening of Optical Pulse Propagated through the Turbulent Atmosphere (교란대기를 통해 전송되는 광 펄스의 퍼짐에 관한 연구)

  • 정진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • When an optical pulse is propagated through the atmosphere space, it is attenuated and broadened by the effect of atmospheric turbulence. This pulse broadening is occurred by the fluctuation in the arrival time of pulse at an optical receiver. In digital optical communication, the attenuation is important factor but the pulse broadening is more important. In this paper, thus, we will find the broadening of pulse propagated through the turbulent atmosphere, present it as the function of the structure constant for the refractive index fluctuation, and simulate it to the turbulent strength and the transmission length.

Post Deposition Annealing Effect on the Structural, Electrical and Optical Properties of ZnO/Ag/ZnO Thin Films

  • Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • Transparent conductive ZnO/Ag/ZnO (ZAZ) multilayer films were deposited by Radio frequency (RF) magnetron sputtering and direct current (DC) magnetron sputtering. The effects of post deposition vacuum annealing temperature on the structural, electrical and optical properties of the ZAZ multilayer films were investigated. The thickness of ZAZ films is kept constant at ZnO 50 nm/Ag 5nm/ZnO 45 nm, while the vacuum annealing temperatures were varied from 200 and $400^{\circ}C$, respectively. As-deposited ZAZ films exhibit a sheet resistance of $6.1{\Omega}/{\Box}$ and optical transmittance of 72.7%. By increasing annealing temperature to $200^{\circ}C$, the resistivity decreased to as low as $5.3{\Omega}/{\Box}$ and optical transmittance also increased to as high as 82.1%. Post-deposition annealing of ZAZ multilayer films lead to considerably lower electrical resistivity and higher optical transparency, simultaneously by increased crystallization of the films.