• 제목/요약/키워드: optical coherence tomography(OCT)

검색결과 139건 처리시간 0.028초

Simple Spectral Calibration Method and Its Application Using an Index Array for Swept Source Optical Coherence Tomography

  • Jung, Un-Sang;Cho, Nam-Hyun;Kim, Su-Hwan;Jeong, Hyo-Sang;Kim, Jee-Hyun;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.386-393
    • /
    • 2011
  • In this study, we report an effective k-domain linearization method with a pre-calibrated indexed look-up table. The method minimizes k-domain nonlinear characteristics of a swept source optical coherence tomography (SS-OCT) system by using two arrays, a sample position shift index and an intensity compensation array. Two arrays are generated from an interference pattern acquired by connecting a Fabry-Perot interferometer (FPI) and an optical spectrum analyzer (OSA) to the system. At real time imaging, the sample position is modified by location movement and intensity compensation with two arrays for linearity of wavenumber. As a result of evaluating point spread functions (PSFs), the signal to noise ratio (SNR) is increased by 9.7 dB. When applied to infrared (IR) sensing card imaging, the SNR is increased by 1.29 dB and the contrast noise ratio (CNR) value is increased by 1.44. The time required for the linearization and intensity compensation is 30 ms for a multi thread method using a central processing unit (CPU) compared to 0.8 ms for compute unified device architecture (CUDA) processing using a graphics processing unit (GPU). We verified that our linearization method is appropriate for applying real time imaging of SS-OCT.

Development of Dual Beam High Speed Doppler OFDI

  • Kim, SunHee;Park, TaeJin;Oh, Wang-Yuhl
    • 비파괴검사학회지
    • /
    • 제33권3호
    • /
    • pp.283-288
    • /
    • 2013
  • This paper describes development of a high speed Doppler OFDI system for non-invasive vascular imaging. Doppler OFDI (optical frequency domain imaging) is one of the phase-resolved second generation OCT (optical coherence tomography) techniques for high resolution imaging of moving elements in biological tissues. To achieve a phase-resolved imaging, two temporally separated measurements are required. In a conventional Doppler OCT, a pair of massively oversampled successive A-lines is used to minimize de-correlation noise at the expense of significant imaging speed reduction. To minimize a de-correlation noise between targeted two measurements without suffering from significant imaging speed reduction, several methods have been developed such as an optimized scanning pattern and polarization multiplexed dual beam scanning. This research represent novel imaging technique using frequency multiplexed dual beam illumination to measure exactly same position with aimed time interval. Developed system has been verified using a tissue phantom and mouse vessel imaging.

SOA 2개의 병렬연결을 통한 파장 가변 레이저 개발 (Development of Wavelength Swept Laser by using the two SOAs parallel configuration)

  • 김훈섭;엄진섭
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.235-238
    • /
    • 2008
  • In this paper, we have developed wavelength swept laser system for the swept source optical coherence tomography(SS-OCT). A laser is constructed by using the two SOAs parallel configuration, fiber Fabry-Perot tunable filter(FFP-TF). The wavelength sweeps are repetitively generated with the repetition period of 50Hz. The wavelength tuning range of the laser is more than FWHM of 80nm centered at the wavelength of 1310nm and the line-width of the source is 0.12 nm.

  • PDF

Assessment of the pigeon (Columba livia) retina with spectral domain optical coherence tomography

  • Kim, Sunhyo;Kang, Seonmi;Susanti, Lina;Seo, Kangmoon
    • Journal of Veterinary Science
    • /
    • 제22권5호
    • /
    • pp.65.1-65.12
    • /
    • 2021
  • Background: To assess the normal retina of the pigeon eye using spectral domain optical coherence tomography (SD-OCT) and establish a normative reference. Methods: Twelve eyes of six ophthalmologically normal pigeons (Columba livia) were included. SD-OCT images were taken with dilated pupils under sedation. Four meridians, including the fovea, optic disc, red field, and yellow field, were obtained in each eye. The layers, including full thickness (FT), ganglion cell complex (GCC), thickness from the retinal pigmented epithelium to the outer nuclear layer (RPE-ONL), and from the retinal pigmented epithelium to the inner nuclear layer (RPE-INL), were manually measured. Results: The average FT values were significantly different among the four meridians (p < 0.05), with the optic disc meridian being the thickest (294.0 ± 13.9 ㎛). The average GCC was thickest in the optic disc (105.3 ± 27.1 ㎛) and thinnest in the fovea meridian (42.8 ± 15.3 ㎛). The average RPE-INL of the fovea meridian (165.5 ± 18.3 ㎛) was significantly thicker than that of the other meridians (p < 0.05). The average RPE-ONL of the fovea, optic disc, yellow field, and red field were 91.2 ± 5.2 ㎛, 87.7 ± 5.3 ㎛, 87.6 ± 6.5 ㎛, and 91.4 ± 3.9 ㎛, respectively. RPE-INL and RPE-ONL thickness of the red field meridian did not change significantly with measurement location (p > 0.05). Conclusions: Measured data could be used as normative references for diagnosing pigeon retinopathies and further research on avian fundus structure.

Nd:YAG 레이저에 의한 다층 박막의 미소 점 마킹 (Spot marking of the multilayer thin films by Nd:YAG laser)

  • 김현진;신용진
    • 한국광학회지
    • /
    • 제15권4호
    • /
    • pp.361-368
    • /
    • 2004
  • 콤팩트디스크(CD-R; Compact DiskRecordable)를 성분별로 분리하여 제작하고, 다층 박막 구조를 만들어서 레이저빔의 에너지를 변화시켜 가면서 조사하여 각 성분 층에서의 최적 미소 점 마킹 조건과 홈 형성 과정에 관하여 연구하였다. 본 연구는 Q-스위치 Nd:YAG 레이저를 이용하여 준비된 각 시료의 표면에 27∼373 mJ 빔을 80 $\mu\textrm{m}$의 점적 크기로 조사하여 샘플에 형성된 흠 형태를 광학현미경(OM; Optical Microscope)과 광 결맞음 단층촬영기(OCT; Optical Coherence Tomography)로 비교-관찰하여 미소 점 마킹의 형성 과정을 분석하였다. 다층 박막에서 용융된 기판 층은 짧은 시간동안 충분한 열 흐름이 발생하여 증배의 형성을 야기하며, 반사 층과 염료 층 사이에 흡수된 에너지는 염료를 용융시키고 체적을 증가시켰으며, 증배가 식으면서 표면장력의 영향 및 레이저빔에 의한 순간적인 시편의 온도상승으로 기화와 반동압력에 의한 질량흐름 때문에 두 층의 경계면에서 홈과 외륜의 발생을 설명할 수 있었다. 따라서 다층 박막에서의 미소 점 마킹의 형성 과정은 표면장력, 용융 점성력, 층 두께, 다층 박막 성분 물질의 물리화학적ㆍ광학적 성질과 관계가 있음을 알 수 있었다.

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

웨이블릿 계수를 적용한 OCT영상의 이미지향상에 관한 연구 (A Study on the Image Enhancement of OCT Image using Wavelet coefficients)

  • 이승용;황대석;류재훈;이영우;류광렬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.140-143
    • /
    • 2004
  • 본 논문은 치아 OCT영상에 웨이블릿 계수를 적용하여 영상을 향상한 연구이다. 처리 과정은 치아 OCT영상을 전처리하여 그래이 영상으로 만들고 웨이블릿 변환하여 상세계수들을 획득한 후 상세계수들로부터 고주파 성분을 추출하고 입력영상에 적용시켜 에지를 강조한다. 실험 결과 치아 OCT영상의 명암 대비가 강화되었으며, 화질이 개선되었다.

  • PDF

cGAN을 이용한 OCT 이미지의 층 분할 (Segmenting Layers of Retinal OCT Images using cGAN)

  • 권오흠;권기룡;송하주
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1476-1485
    • /
    • 2020
  • Segmenting OCT retinal images into layers is important to diagnose and understand the progression of retinal diseases or identify potential symptoms. The task of manually identifying these layers is a difficult task that requires a lot of time and effort even for medical professionals, and therefore, various studies are being conducted to automate this using deep learning technologies. In this paper, we use cGAN-based neural network to automatically segmenting OCT retinal images into seven terrain-type regions defined by six layer boundaries. The network is composed of a Segnet-based generator model and a discriminator model. We also proposed a dynamic programming algorithm for refining the outputs of the network. We performed experiments using public OCT image data set and compared its performance with the Segnet-only version of the network. The experimental results show that the cGAN-based network outperforms Segnet-only version.

Detection of Magnetic Nanoparticles in Tissue Using Magneto-Motive DP-OCT

  • Oh, Jung-Hwan;Lee, Ho;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • 제11권1호
    • /
    • pp.26-33
    • /
    • 2007
  • We demonstrate the capability of differential-phase optical coherence tomography (DP-OCT) to detect superparamagnetic iron oxide (SPIO) nanoparticles taken up by liver parenchymeal macrophages (Kupffer cells). We apply an external time-varying high-intensity focused magnetic field. Our experiments demonstrate a novel diagnostic modality to detect macrophages that have taken up SPIO nanoparticles. Magnetic force acting on the nanoparticles was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially increased and focused the magnetic field strength ($B_{max}$ = 2 Tesla). $ApoE^{-/-}$ mice were sacrificed 2 days post intravenous injections of different SPIO doses (1.0, and 0.1 mmol Fe/kg body weight). Livers of $ApoE^{-/-}$ mice with and without injection of SPIO nanoparticles were investigated using DP-OCT, which detects tissue movement with nanometer resolution. Frequency response of iron-laden liver movement was twice the stimulus frequency. Movement was not observed in livers of control mice. Results of our experiments indicate DP-OCT is a candidate methodology to detect tissue based macrophages containing SPIO nanoparticles excited by an external focused magnetic field.