• Title/Summary/Keyword: optical annealing

Search Result 650, Processing Time 0.036 seconds

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

Effect of annealing om p-type Al/SnO2 transparent conductive multilayer films (p-형 Al/SnO2 투명 전도성 다층박막에 미치는 열처리의 영향)

  • Park, Geun-Yeong;Kim, Seong-Jae;Gu, Bon-Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.27-28
    • /
    • 2014
  • 투명전극이란 전기 전도도를 갖는 동시에 가시광선 영역에서 빛을 투과하는 성질을 가지는 소재이다. 일반적으로 가시광선 영역(380nm~780nm)에서 80%이상의 광 투과도를 가지며, 비저항이 $10^{-3}{\Omega}{\cdot}cm$ 이하, optical band gap 이 3.3 eV 이상인 물질을 TCO(Transparent Conducting oxide)라고 한다. 현재까지 국내의 TCO 관련 연구는 터치패널, 디스플레이, 태양전지 등 광전자분야에서 가장 널리 사용되고 있는 ITO(Sn:In2O3)에 치중되어 있으며, 관련 연구도 거의 디스플레이 맞춤형 연구개발이 주류를 이루어왔다. ITO가 전기전도성이 우수하고 동시에 가시광선 영역에서의 투과율도 80%이상으로 전기적, 광학적 특성이 우수하다는 장점을 가지고 있으나, In의 희소성으로 인한 고가격, 유독성, 접착력 문제 때문에 이를 대체하기 위해 제조원가가 ITO에 비하여 월등히 저렴하고 내화학성과 내마모성이 우수하면서도, 가시광선 영역에서의 광투과율이 80%이상으로 좋다는 $SnO_2$에 관한 연구가 활발히 진행되어 왔다. 적절한 dopant를 첨가하여 $SnO_2$자체의 높은 광학적 투과도를 유지하면서 전기전도성을 더 높일수 있고, 투명전극이 가져야 할 고온 안정성을 가지고 있으며 비독성이고 수소 플라즈마에 대한 내성이 더 클 뿐만 아니라 저온에서 성장이 가능하다. $SnO_2$의 전기 전도도를 높이기 위한 Al, In, Ga, B와 같은 3족 원소가 $SnO_2$의 n형 dopant로 널리 사용되고 있다. 그 중 Al은 반응성이 커서 박막 증착 중에 산화되기 쉬운 반면, 전기적 특성 및 광학적 특성의 향상을 이룰 수 있다. 본 연구에서는 Rf Sputtering법을 사용하여 quartz기판 위에 다층박막 형태의 투명전도막을 제작한 후, 열처리를 수행, 이에 의한 다층박막 내 계면간 상호확산 현상을 이용하여 투명 전도막의 특성변화를 관찰하였다. 박막의 구조적 특성은 XRD장비를 사용하여 분석하였으며, 전기적, 광학적 특성은 각각 표면저항기, 홀 측정 장비, 그리고 UV-VIS-NI를 사용하여 확인하였다.

  • PDF

The Electrical and Optical Properties of Al-Doped ZnO Films Sputtered in an Ar:H2 Gas Radio Frequency Magnetron Sputtering System

  • Hwang, Seung-Taek;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.81-84
    • /
    • 2010
  • Al-doped ZnO (AZO) films were prepared by an Ar:$H_2$ gas radio frequency (RF) magnetron sputtering system with a AZO ($2\;wt{\cdot}%\;Al_2O_3$) ceramic target at the low temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature of $300^{\circ}C$. To investigate the influence of the $H_2$ flow ratio on the properties of the AZO films, the $H_2$ flow ratio was changed from 0.5% to 2%. As a result, the AZO films, deposited with a 1% $H_2$ addition, showed a resistivity of $11.7\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$. When the AZO films were annealed at $300^{\circ}C$ for 1 hour in a hydrogen atmosphere, the resistivity decreased from $11.7\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$ to $5.63\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$. The lowest resistivity of $5.63\;{\times}\;10^{-4}{\Omega}{\cdot}cm$ was obtained by adding 1% hydrogen gas to the deposition and annealing process. The X-ray diffraction patterns of all the films showed a preferable growth orientation in the (002) plane. The spectrophotometer measurements showed that the transmittance of 85% was obtained by the film deposited with the $H_2$ flow ratio of 1% at 940 nm for GaAs/GaAlAs LEDs.

A Study on the Recrystallization Behavior of Zr-xSn Binary Alloys (Zr-xSn 이원계 합금의 재결정에 관한 연구)

  • Lee, Myeong-Ho;Gu, Jae-Song;Jeong, Yong-Hwan;Jeong, Yeon-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1123-1128
    • /
    • 1999
  • To investigate the effect of Sn on the recrystallization of Zr-based alloys. Zr-xSn (x=0.5, 0.8, 1.5, 2.0wt.%) alloys were manufactured to be the sheets through the defined manufacturing procedure. The specimens were annealed at $300^{\circ}C$ to $800^{\circ}C$ for 1 hour. The hardness, microstructure and precipitate of the alloys with the annealing temperature were investigated by using micro- knoop hardness tester, optical microscope(O/M) and transmission electron microscope(TEM), respectively. The cold-worked Zr-xSn alloys showed the typical behavior of the recovery. recrystallization, and grain growth. The recrystallization of Zr-xSn alloys occurred between $500^{\circ}C$ and $700^{\circ}C$. As the Sn content increased. the recrystallization temperature of the cold-worked alloys increased but their grain sizes after recrystallization decreased. It is suggested that the recrystallization of the cold- worked Zr alloys be occurred by the subgrain coalescence and growth mechanism.

  • PDF

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells (Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구)

  • Cho, Bo Hwan;Kim, Seon Cheol;Mun, Sun Hong;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

Optimization of the deposition condition on hetero-epitaxial As-doped ZnO thin films by pulsed laser deposition (PLD를 이용한 hetero-epitaxial As-doped ZnO 박막 증착 조건의 최적화)

  • Lee, Hong-Chan;Jung, Youn-Sik;Choi, Won-Kook;Park, Hun;Shim, Kwang-Bo;Oh, Young-Jei
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.207-210
    • /
    • 2005
  • In order to investigate the influence of the homo buffer layer on the microstructure of the ZnO thin film, undoped ZnO buffer layer were deposited on sapphire (0001) substrates by ultra high vaccum pulsed laser deposition (UHV-PLD) and molecular beam eiptaxy (MBE). After high temperature annealing at $600^{\circ}C$ for 30min, undoped ZnO buffer layer was deposited with various oxygen pressure (35~350mtorr). On the grown layer of undoped ZnO, Arsenic-doped(l, 3wt%) ZnO layers were deposited by UHV-PLD. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement. From $\Theta-2\Theta$ XRD analysis, all the films showed strong (0002) diffraction peak, and this indicates that the grains grew uniformly with the c-axis perpendicular to the substrate surface. Field emission scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO were varied with oxygen pressure, arsenic doping level, and the deposition method of undoped ZnO buffer layers. The films became denser and smoother in the cases of introducing MBE-buffer layer and lower oxygen pressure during As-doped ZnO deposition. Higher As-doping concentration enhanced the columnar-character of the films.

  • PDF

Liquid crystal aligning capabilities for vertical aligned NLC on the $CeO_x$ thin film layer with thermal evaporation

  • Han, Jin-Woo;Kim, Mi-Jung;Kim, Jong-Yeon;Han, Jeong-Min;Kim, Young-Hwan;Kim, Jong-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.371-371
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for vertical alignment on the $CeO_x$ thin film by thermal evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $CeO_x$ thin film were investgated. The uniform LC alignment on the $CeO_x$ thin film surfaces and good thermal stabilities with thermal evaporation can be achieved. It is considerated that the LC alignment on the $CeO_x$ thin film by thermal evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $CeO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $CeO_x$ thin film layer with oblique thermal evaporation.

  • PDF

Hydrogen shallow donors in ZnO and $SnO_2$ thin films prepared by sputtering methods

  • Kim, Dong-Ho;Kim, Hyeon-Beom;Kim, Hye-Ri;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.145-145
    • /
    • 2010
  • In this paper, we report that the effects of hydrogen doping on the electrical and optical properties of typical transparent conducting oxide films such as ZnO and $SnO_2$ prepared by magnetron sputtering. Recently, density functional theory (DFT) calculations have shown strong evidence that hydrogen acts as a source of n-type conductivity in ZnO. In this work, the beneficial effect of hydrogen incorporation on Ga-doped ZnO thin films was demonstrated. It was found that hydrogen doping results a noticeable improvement of the conductivity mainly due to the increases in carrier concentration. Extent of the improvement was found to be quite dependent on the deposition temperature. A low resistivity of $4.0{\times}10^{-4}\;{\Omega}{\cdot}cm$ was obtained for the film grown at $160^{\circ}C$ with $H_2$ 10% in sputtering gas. However, the beneficial effect of hydrogen doping was not observed for the films deposited at $270^{\circ}C$. Variations of the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. Theoretical calculations also suggested that hydrogen forms a shallow-donor state in $SnO_2$, even though no experimental determination has yet been performed. We prepared undoped $SnO_2$ thin films by RF magnetron sputtering under various hydrogen contents in sputtering ambient and then exposed them to H-plasma. Our results clearly showed that the hydrogen incorporation in $SnO_2$ leads to the increase in carrier concentration. Our experimental observation supports the fact that hydrogen acting as a shallow donor seems to be a general feature of the TCOs.

  • PDF

Photocatalytic Properties of WO3 Thin Films Prepared by Electrodeposition Method (전기증착법으로 제조된 WO3 박막의 광촉매 특성)

  • Kang, Kwang-Mo;Jeong, Ji-Hye;Lee, Ga-In;Im, Jae-Min;Cheon, Hyun-Jeong;Kim, Deok-Hyeon;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • Tungsten trioxide ($WO_3$) is a promising candidate as a photocatalyst because of its outstanding electrical and optical properties. In this study, we prepare $WO_3$ thin films by electrodeposition and characterize the photocatalytic degradation of methylene blue using these films. Depending on the voltage conditions (static and pulse), compact and porous $WO_3$ films are fabricated on a transparent ITO/glass substrate. The morphology and crystal structure of electrodeposited $WO_3$ thin films are investigated by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. An application of static voltage during electrodeposition yields a compact layer of $WO_3$, whereas a highly porous morphology with nanoflakes is produced by a pulse voltage process. Compared to the compact film, the porous $WO_3$ thin film shows better photocatalytic activities. Furthermore, a much higher reaction rate of degradation of methylene blue can be achieved after post-annealing of $WO_3$ thin films.