• Title/Summary/Keyword: optical annealing

Search Result 650, Processing Time 0.023 seconds

Low Temperature Recrystallization of Self-Implanted Amorphous Silicon Films (저온공정에 의한 자기이온주입된 비정질 실리콘 박막의 재결정화)

  • Lee, Man-Hyeong;Choe, Deok-Gyun;Kim, Jeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.417-427
    • /
    • 1992
  • Silicon ion implantation was performed to LPCVD amorphous Si films and the low temperature annealing process followed with various conditions to find the optimal physical properties by studying recrystallization behavior. The uniformity of the recrystallized films was inspected by optical microscopy and for this purpose, new KOH: (IPA) : $H_2$O: $K_2$C${r_2}{O_7}$, etchant was developed. XRD and TEM results showed that the crystallites were grown as a form of dendrite with (111) preferred orientation, and the grain size was increased with dose concentration. The maximum grain size was obtained when the 3${\times}{10^{15}}$c$m^2$ implanted amorphous Si film was recrystallized at 55 $0^{\circ}C$for more than 40 hrs and at this condition the grain size was 3.2${\mu}$m.

  • PDF

Low Index Contrast Planar SiON Waveguides Deposited by PECVD (PECVD 법에 의해 제작된 저굴절률 차이 평판 SiON광도파로)

  • Kim, Yong-Tak;Yoon, Seok-Gyu;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.178-181
    • /
    • 2005
  • Silicon oxynitride (SiON) layers deposited upon a $SiO_2/Si$ buffer layer placed upon silicon wafers have been obtained by using PECVD from $SiH_4,\;N_2O$, and $N_2$. It can be seen that the refractive index, measured by using a prism coupler, for the SiON films can be varied between 1.4480 and 1.4958 at a wavelength of 1552 nm by changing the process parameters. Optical planar waveguides with a thickness of $6{\mu}m$ and a refractive index contrast ($\Delta$n) of $0.36\% have been deposited. Also, etching experiments were performed using ICP dry etching equipment on thick SiON films grown onto Si substrates covered by a thick $SiO_2$ buffer layer. A polarization maintaining single-mode fiber was used for the input and a microscope objective for the output at $1.55{\mu}m$. As a result, a low index contrast SiON based waveguide is fabricated with easily adjustable refractive index of core layer. It illustrates that the output intensity mode is a waveguiding single-mode.

Study on point defect for $ZnIn_2S_4$ epilayers grown by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의해 성장된 $ZnIn_2S_4$ 에피레이어의 점결함 연구)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.141-142
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.9514eV - ($7.24\times10^{-4}$ eV/K)$T^2$/(T + 489 K). After the as-grown $ZnIn_2S_4$ single crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Zn}$, $V_s$, $Zn_{int}$, and $S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

  • PDF

Point defect for $AgGaSe_2$ epilayers grown by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의해 성장된 $AgGaSe_2$ 에피레이어의 점결함 연구)

  • Hong, Myung-Seok;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.98-99
    • /
    • 2008
  • To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) 1.9501 eV - ($8.79\times10^{-4}$ eV/K)$T^2$/(T + 250 K). After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag}$, $V_{Se}$, $Ag_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

Preparation of ZnO Thin Films with UV Emission by Spin Coating and Low-temperature Heat-treatment (스핀코팅 및 저온열처리에 의한 자외선 발광특성을 갖는 산화아연 박막의 제조)

  • Kang, Bo-An;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.73-77
    • /
    • 2008
  • Purpose: This research is that prepare amorphous or crystalline ZnO thin films with pure strong UV emission on soda-lime-silica glass (SLSG) substrates by low-temperature annealing. Methods: Growth characteristic and optical properties of the amorphous or nano-crystalline ZnO thin films prepared on soda - lime - silica glass substrates by chemical solution deposition at 100, 150, 200, 250 and $300^{\circ}C$ were investigated using X-ray diffraction analysis, ultraviolet - visible - near infrared spectrophotometer, and photoluminescence. Results: The films exhibited an amorphous pattern even when finally annealed at $100^{\circ}C{\sim}200^{\circ}C$ for 60 min, while crystalline ZnO was obtained by prefiring at 250 and $300^{\circ}C$. The photoluminescence spectrum of amorphous ZnO films shows a strong NBE emission, while the visible emission is nearly quenched. Conclusions: These results indicate it should be possible to cheaply and easily fabricate ZnO-based optoelectronic devices at low temperature, below $200^{\circ}C$, in the future.

  • PDF

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

Fabrication of Two-dimensional MoS2 Films-based Field Effect Transistor for High Mobility Electronic Device Application

  • Joung, DaeHwa;Park, Hyeji;Mun, Jihun;Park, Jonghoo;Kang, Sang-Woo;Kim, TaeWan
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.110-113
    • /
    • 2017
  • The two-dimensional layered $MoS_2$ has high mobility and excellent optical properties, and there has been much research on the methods for using this for next generation electronics. $MoS_2$ is similar to graphene in that there is comparatively weak bonding through Van der Waals covalent bonding in the substrate-$MoS_2$ and $MoS_2-MoS_2$ heteromaterial as well in the layer-by-layer structure. So, on the monatomic level, $MoS_2$ can easily be exfoliated physically or chemically. During the $MoS_2$ field-effect transistor fabrication process of photolithography, when using water, the water infiltrates into the substrate-$MoS_2$ gap, and leads to the problem of a rapid decline in the material's yield. To solve this problem, an epoxy-based, as opposed to a water-based photoresist, was used in the photolithography process. In this research, a hydrophobic $MoS_2$ field effect transistor (FET) was fabricated on a hydrophilic $SiO_2$ substrate via chemical vapor deposition CVD. To solve the problem of $MoS_2$ exfoliation that occurs in water-based photolithography, a PPMA sacrificial layer and SU-8 2002 were used, and a $MoS_2$ film FET was successfully created. To minimize Ohmic contact resistance, rapid thermal annealing was used, and then electronic properties were measured.

Photo-induced Electrical Properties of Metal-oxide Nanocrystal Memory Devices

  • Lee, Dong-Uk;Cho, Seong-Gook;Kim, Eun-Kyu;Kim, Young-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.254-254
    • /
    • 2011
  • The memories with nano-particles are very attractive because they are promising candidates for low operating voltage, long retention time and fast program/erase speed. In recent, various nano-floating gate memories with metal-oxide nanocrystals embedded in organic and inorganic layers have been reported. Because of the carrier generation in semiconductor, induced photon pulse enhanced the program/erase speed of memory device. We studied photo-induced electrical properties of these metal-oxide nanocrystal memory devices. At first, 2~10-nm-thick Sn and In metals were deposited by using thermal evaporation onto Si wafer including a channel with $n^+$ poly-Si source/drain in which the length and width are 10 ${\mu}m$ each. Then, a poly-amic-acid (PAA) was spin coated on the deposited Sn film. The PAA precursor used in this study was prepared by dissolving biphenyl-tetracarboxylic dianhydride-phenylene diamine (BPDA-PDA) commercial polyamic acid in N-methyl-2-pyrrolidon (NMP). Then the samples were cured at 400$^{\circ}C$ for 1 hour in N atmosphere after drying at 135$^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was followed by using a thermal evaporator, and then the gate electrode was defined by photolithography and etching. The electrical properties were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. Also, the optical pulse for the study on photo-induced electrical properties was applied by Xeon lamp light source and a monochromator system.

  • PDF

Crystal Growth Sensor Development of II-VI Compound Semiconductor : CdS (II-VI족 화합물 반도체의 결정성장 및 센서 개발에 관한 연구)

  • D.I. Yang;Y.J. Shin;S.Y. Lim;Y.D. Choi
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.126-133
    • /
    • 1992
  • This study deals with the crystal growth and the optical characteristics of CdS thin films activatedby silver. CdS:Ag thin films were deposited by using an electron beam evaporation(EBE) technique in vacuumof 1.5X 10-'torr, voltage of 4 kV, current of 2.5 mA and substrate temperature of 250$^{\circ}$C CdS:Ag photoconductivefilms prepared by EBE method show high photoconductivity after annealing at about 550"c for 0.5 h in air andAr gas.The grain size of CdS:Ag thin films annealed in Ar atmosphere (1 atm) was grown over 1 ym and the thicknessof the films is 4-5 pm. The analysis of X-ray diffraction patterns shows that the crystal structures are hexagonal.The diffraction line by (00.2) plane can only be observed, indicating that c-axis of hexagonal grows preferentiallyperpendicular to the substrate. The profiles of photoluminescence spectra of CdS:Ag films show Gaussian typecurves at room temperature, the maximum peak spectral sensitivity of CdS:Ag is located at the wavelength of520 nm.We annealed CdS:Ag thin films in air and Ar vapor in order to make the CdS photoconductors having theintensive photocurrent, the broad distribution of the photocurrent spectrum and the large value of the ratioof the photocurrent (pc) to the dark current(dc). We found that CdS:Ag thin films annealed in air atmospherewas the best one.air atmosphere was the best one.

  • PDF

The improvement of the stability of hydrogenated amorphous silicon (수소화된 비정질 실리콘박막의 안정성향상에 관한 연구)

  • 이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.51-54
    • /
    • 1999
  • Hydrogenated amorphous silicon (a-Si:H) films are fabricated by Argon radical annealing (ArRA). The deposition rate of continuously deposited a-Si:H film is 1.9 $\AA$/s. As ArRA time are increased to 0.5 and 1 minute, the deposition rate are increased to 2.8 $\AA$/s and 3.3 $\\AA$/s. The deposition rate of a-si:H films with 2 and 3 minutes ArRA time are 3.3 $\AA$/s. As the ArRA time is increased, the optical band gap and the hydrogen contents in the a-Si:H films are increased and slightly decreased. The light-induced degradation of ArRA treated a-Si:H films are less than that of continuously deposited a-Si:H film. The dark conductivity and the conductivity activation energy ($E_a$) of continuously deposited a-Si:H film are decreased to 1/25 in room temperature and increased to 0.09eV By 1 hour light soaking, respectively. The dark conductivity and $E_a$ of ArRA treated a-Si:H film decreased to 1/3 in room temperature and increased to 0.03eV by 1 hour light soaking, respectively. We could improve the stability of a-Si:H films under the light soaking by ArRA technique and discussed the microscopic process of ArRA technique.

  • PDF