• 제목/요약/키워드: optical anisotropy

검색결과 148건 처리시간 0.025초

Dielectric and Optical Study of Polymer Nematic Liquid Crystal Composite

  • Manohar, S.;Shukla, S.N.;Chandel, V.S.;Shukla, J.P.;Manohar, R.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.111-115
    • /
    • 2013
  • The dielectric anisotropy and dispersion of the real and imaginary part of the permittivity of commercially important nematic mixture E-24 and its polymer composite were investigated in the frequency range from 1 kHz to 10 MHz, and temperature range $14^{\circ}C$ to $55^{\circ}C$. The percentage optical transmittance and density have also been measured for both the systems. The results have been explained by assuming molecular rotation about the long molecular axis, under a hindering nematic potential. The dielectric anisotropy ${\Delta}{\varepsilon}$ is positive, and the mean dielectric permittivity falls with rising temperature. ${\Delta}{\varepsilon}$ is also used to determine the order parameter with varying temperature.

Optical dielectric function of impurity doped Quantum dots in presence of noise

  • Ghosh, Anuja;Bera, Aindrila;Ghosh, Manas
    • Advances in nano research
    • /
    • 제5권1호
    • /
    • pp.13-25
    • /
    • 2017
  • We examine the total optical dielectric function (TODF) of impurity doped GaAs quantum dot (QD) from the viewpoint of anisotropy, position-dependent effective mass (PDEM) and position dependent dielectric screening function (PDDSF), both in presence and absence of noise. The dopant impurity potential is Gaussian in nature and noise employed is Gaussian white noise that has been applied to the doped system via two different modes; additive and multiplicative. A change from fixed effective mass and fixed dielectric constant to those which depend on the dopant coordinate manifestly affects TODF. Presence of noise and also its mode of application bring about more rich subtlety in the observed TODF profiles. The findings indicate promising scope of harnessing the TODF of doped QD systems through expedient control of site of dopant incorporation and application of noise in desired mode.

Optical Emission Anisotropy in InP Aligned Quantum Dots

  • Shin, Y.H.;Kim, Yongmin;Song, J.D.;Choi, Subong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.288.2-288.2
    • /
    • 2014
  • InP quantum dots were grown by using the molecular beam epitaxy technique. Quantum dots are connected and composed string-like one-dimensional structure due to the strain field along [110] crystal direction. Two prominent photoluminescence transitions from normal quantum dots and string-like one-dimensional structure were observed which show strong optical anisotropy along [1-10] and [110] crystal directions. Both peaks also showed blue-shift while rotating emission polarization from [1-10] to [110] direction. Such optical transition behaviors are the consequence of the valence band mixing caused by strain field along the [110] crystal direction.

  • PDF

Novel Properties of Boron Added Amorphous Rare Earth-transition Metal Alloys for Giant Magnetostrictive and Magneto-optical Recording Materials

  • Jai-Young Kim
    • Journal of Magnetics
    • /
    • 제3권3호
    • /
    • pp.78-81
    • /
    • 1998
  • Large magneto crystalline anisotropy energy and demagnetization energy of rare earth-transition metal (RF-TM) alloys play roles of bottlenecks towards their commercial applications for giant magnetostrictive and blue wavelength magneto optical recording materials, respectively. To solve the above problems, boron is added into amorphous RE-TM alloys to produce its electron transferring. The boron added amorphous RE-TM alloys show novel magnetic and magneto-optical properties as follows; 1) an amorphous $(Sm_{33}Fe_{76})$97B3 alloy obtains the magnetostriction of$ -550{times}10^{-6}$ at 400 Oe compared with saturation magnetostriction of$ -60{\times}10^{-6}$ in conventional Ni based alloys, 2) an amorphous$ (Nd_{33}Fe_{67})_{95}B_5$ alloy increases effective magnetic anisotropy to$ -0.5{\times}10^{-6} ergs/cm^3 from -3.5{\times}10^6 ergs/cm^3$ without boron, which correspond to the polar Kerr rotation angles of 0.52$^{\circ}$and 0.33$^{\circ}$, respectively. These results attribute to selective 2p-3d electron orbits exchange coupling (SEC).

  • PDF

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
    • Advances in nano research
    • /
    • 제2권3호
    • /
    • pp.157-172
    • /
    • 2014
  • The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.