• Title/Summary/Keyword: optical amplifier

Search Result 438, Processing Time 0.028 seconds

Design method for optical transversal filter with an optical amplifier (한 개의 광증폭기를 이용한 광트랜스버셜 필터)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.105-111
    • /
    • 2000
  • To realize a desired characteristics of an optical transversal fitters, The number of optical amplifiers as same as the lentgh of a given transfer function is needed In this paper, we consider an optical transversal filter that uses only one fiber amplifier, which can realize a constant(=$\alpha$) times of a given transfer function with e as large as possible in order to make use of optical signal energy. We also present some applications using this optical fiber filter.

  • PDF

Experimental Evaluation of Frequency Characteristics of Gain-saturated EDFA for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems

  • Yoo Seok, Jeong;Chul Han, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Frequency characteristics of gain-saturated erbium-doped fiber amplifier (EDFA) are experimentally evaluated to mitigate the optical signal fluctuation induced by atmospheric turbulence in terrestrial freespace optical communication systems. Here, an acousto-optic modulator (AOM) is used to emulate optical signal fluctuations induced by atmospheric turbulence. The waveform which is generated in proportion to the refractive-index structural parameters is used to drive the AOM at various periodic frequencies. Thus, the dependence of the signal fluctuation suppression on the frequency is evaluated. The experiment is conducted using a periodic frequency sweep of the AOM driving voltage waveform and signal input power variation of the amplifier. It is observed that a low periodic frequency and high input signal power effectively suppress the optical signal fluctuation. This study evaluates the experimental results from the high-pass filter and gain-saturation characteristics of the EDFA.

5MHz-2GHz에서 동작하는 광대역 증폭기의 설계 및 제작

  • 박천석
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.136-140
    • /
    • 1990
  • A hybrid wideband amplifier having bandwidth from 5MHz to 2000MHz with a gain of 10db$\pm$3dB is designed and implemented by using a lossy matched network and GaAs FET. The implemented amplifier circuit operates as a capacitor-resistor(C-R) coupled amplifier circuit in the low frequency range (below 800 MHz) in which {{{{ LEFT $\mid$ S_{21 } RIGHT $\mid$ }} for the GaAs FET is constant. It also operates as a lossless impedance matching circuit in the microwave frequency range in which S21 for the GaAs FET has a slope of approximately -6dB/octave. Using this configuration technique, Two stage GaAs FET amplifier implemented is measured to 10dB gain within a 3dB fluctuation over the frequency band from 5 to 2000MHz.

  • PDF

Wideband Hybrid Fiber Amplifier Using Er-Doped Fiber and Raman Medium

  • Seo, Hong-Seok;Ahn, Joon-Tae;Park, Bong-Je;Chung, Woon-Jin
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.779-784
    • /
    • 2007
  • In this paper, we report the experimental results of a hybrid wideband fiber amplifier. The amplifying medium is a concatenated hybrid fiber consisting of Er-doped fiber (EDF) and dispersion compensating fiber (DCF). The gain mechanisms are based on stimulated emission in the EDF and stimulated Raman scattering (SRS) in the DCF. Since we simultaneously use optical amplification by the two processes, the gain bandwidth is easily expanded over 105 nm by a two-tone pumping scheme. Using an experimental setup constructed with a hybrid structure of EDF-DCF-EDF, we analyzed the spectral behavior of amplified spontaneous emission for pumping powers. We achieved an optical gain of over 20 dB in the wavelength range from 1,500 to 1,600 nm under optimized pumping conditions to make the spectral gain shape flat.

  • PDF

Near IR Luminescence Properties of Er-doped Sol-Gel Films (Er이 도핑된 졸-겔 코팅막의 발광특성)

  • Lim, Mi-Ae;Seok, Sang-Il;Kim, Ju-Hyeun;Ahn, Bok-Yeop;Kwon, Jeong-Oh
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.136-136
    • /
    • 2003
  • In fiber optic networks, system size and cost can be significantly reduced by development of optical components through planar optical waveguides. One important step to realize the compact optical devices is to develop planar optical amplifier to compensate the losses in splitter or other components. Planar amplifier provides optical gain in devices less than tens of centimeters long, as opposed to fiber amplifiers with lengths of typically tens of meters. To achieve the same amount of gain between the planar and fiber optical amplifier, much higher Er doping levels responsible for the gain than in the fiber amplifier are required due to the reduced path length. These doping must be done without the loss of homogeniety to minimize Er ion-ion interactions which reduce gain by co-operative upconversion. Sol-gel process has become a feasible method to allow the incorporation of Er ion concentrations higher than conventional glass melting methods. In this work, Er-doped $SiO_2$-A1$_2$ $O_3$ films were prepared by two different method via sol -Eel process. Tetraethylorthosilicate(TEOS)/aluminum secondary butoxide [Al (OC$_4$ $H_{9}$)$_3$], methacryloxypropylcnethoxysaane(MPTS)/aluminum secondary butofde [Al(OC$_4$ $H_{9}$)$_3$] systems were used as starting materials for hosting Er ions. Er-doped $SiO_2$-A1$_2$ $O_3$ films obtahed after heat-treating, coatings on Si substrate were characterized by X-ray din action, FT-IR, and N-IR fluorescence spectroscopy. The luminescence properties for two different processing procedure will be compared and discussed from peak intensity and life time.

  • PDF

4-Channel 2.5-Gb/s/ch CMOS Optical Receiver Array for Active Optical HDMI Cables (액티브 광케이블용 4-채널 2.5-Gb/s/ch CMOS 광 수신기 어레이)

  • Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.22-26
    • /
    • 2012
  • This paper introduces a 2.5-Gb/s optical receiver implemented in a standard 1P4M 0.18um CMOS technology for the applications of active optical HDMI cables. The optical receiver consists of a differential transimpedance amplifier(TIA), a five-stage differential limiting amplifier(LA), and an output buffer. The TIA exploits the inverter input configuration with a resistive feedback for low noise and power consumption. It is cascaded by an additional differential amplifier and a DC-balanced buffer to facilitate the following LA design. The LA consists of five gain cells, an output buffer, and an offset cancellation circuit. The proposed optical receiver demonstrates $91dB{\Omega}$ transimpedance gain, 1.55 GHz bandwidth even with the large photodiode capacitance of 320 fF, 16 pA/sqrt(Hz) average noise current spectral density within the bandwidth (corresponding to the optical sensitivity of -21.6 dBm for $10^{-12}$ BER), and 40 mW power dissipation from a single 1.8-V supply. Test chips occupy the area of $1.35{\times}2.46mm^2$ including pads. The optically measured eye-diagrams confirms wide and clear eye-openings for 2.5-Gb/s operations.

Effect of Optical Delay on the Suppression of the Power Transient Excursion in a Combined Gain-Controlled Erbium-Doped Fiber Amplifier

  • Chung, Hee-Sang;Chang, Sun-Hyok;Park, Heuk;Lee, Hyun-Jae;Chu, Moo-Jung
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.531-534
    • /
    • 2003
  • This report describes the effect of optical delay on the suppression of the power transient excursion in a combined gain-controlled erbium-doped fiber amplifier with an internal optical feedback loop (OFL). A simple homogeneous model showed that the optical delay caused a phase change in the oscillation of the surviving and laser channels, which resulted in a reduction of the overall power transient excursion. In addition to the reduction, a real system with a 1528.7-nm OFL shifted the oscillation upward or downward according to channel removal or addition, whereas another one with a 1560.9-nm OFL did not. This different transient behavior reflected a control-wavelength dependence on optical automatic gain control, where spectral-hole burning dominated over relaxation oscillation for 1528.7 nm, and vice versa for 1560.9 nm.

  • PDF

Intergrated circuit design of power-stabilizing circuitry for optical transmitter (광송신기용 광파워 안정화 회로의 집적회로 설계)

  • 이성철;박기현;정행근
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.47-55
    • /
    • 1996
  • An optical transmitter, which is a key component of the optical transmission system, converts the electrical signal to optical signal and consists of a high-speed current-pulse driver for laser diode and low-speed feedback loops that stabilize optical power against aging, power supply voltage fluctuations, and ambient temperature changes. In this paper, the power-stabilizing part, which forms the bulk of the optical transmitter circuitry was designed in integrted circuits. Operational amplifiers and reference voltage generation circuits, which were identified as key building blocks for the power-stabilizing feedback loops, were designed and were subsequently verified through HSPICE simulations. The designed operational amplifier consists of a two-stage folded cascode amplifier and class AB output stage, whereas the reference voltage is obtained by bandgap reference circuits. Finally the power-stabilizing circuitry was laid out based on 3\mu$m CMOS design rules for fabrication.

  • PDF

All-optical wavelength conversion of 2.5 Gb/s optical signals by four-wave mixing in a semiconductor optical amplifier (반도체 광 증폭기내에서의 4광파 혼합을 이용한 2.5Gb/s 광신호의 전광 파장변환)

  • 방준학;서완석;이성은
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.69-75
    • /
    • 1998
  • We demonstrate wavelength conversion of 2.5Gb/s optical signals by four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). We investigate the effect of input pump and signal powers on the coversion efficiency, optical signal-to-noise ratio (OSNR) and extinction ratio to be a measure of performance in a wavelength converter. As a result, we show that the maximum bit error rate (BER) performance can be obtained by co promising among high-vonversion efficiency (minimum Pprobe), high-OSNR (maximum Pprobe) and low-cross-gain saturation effects (Pprobe kept at least 6dB weaker than Ppump). In our experiment, we obtain optimum performance at +3 dBm pump power and -6dBm signal power. The power penalty incurred in the wavelength conversion can be minimized by careful selection of the input pump and signal powers. We show that about 0.5dB power penalty for 3.2nm wavelength coversion at 10-10 BER is achievable.

  • PDF