• Title/Summary/Keyword: optical amplifier

Search Result 438, Processing Time 0.023 seconds

Implementation of the 155.52 MHz Clock Recovery Receiver for the Fiber Optic Modules (광통신 모듈용 155.52 MHz 클럭복원 리시버의 구현)

  • 이길재;채상훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12C
    • /
    • pp.249-254
    • /
    • 2001
  • A receiver ASIC for fiber optic modules of STM-1 optical communication has been fabricated with 0.65 $\mu\textrm{m}$ CMOS technology. The ASIC has a limit amplifier circuit for the 155.52 Mbps data reshaping, and a clock extraction circuit for the 155.52 MHz clock recovery. The ASIC has an acquisition aid and LOS monitoring circuit for properly operation with near 155.52 MHz clock frequency in case of the data loss due to transmission line open or data transfer fail. Measured results show that the circuit reshapes data from 5 mV to 1 V wide range of input voltage condition, add it recovers system clock with stable on any condition.

  • PDF

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF

A Study on the Method for the Local Transmittance Measurements of the Ocular Lens (안경 렌즈의 국소적 투과율 측정을 위한 방법에 관한 연구)

  • Park, Sang-Kook;Ri, Hyeong-Cheol;Youk, Do-Jin;Sung, Duk-Yong;Kang, Sung-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.471-477
    • /
    • 2014
  • Purpose: We have analyzed the transmittance distribution of the ocular lens using local transmittance microscope to investigate the optical homogeneity of the lens. Methods: The transmittance of the laser which is focused on the surface of the ocular lens was measured by using the photo-detector and lock-in amplifier and analyzed. Multi-coated, uncoated, and progressive lenses were analyzed. Results: In the measurement of the progressive lens and a physical stimulated lens, local transmittance microscopy analysis showed a high degree of match with the measurement results through the optical microscope. In addition, the average value of the transmittance is reduced and the standard deviation was increased in the presence of optical defects. In unstimulated lens, there are a large impact on transmittance whether the anti-reflective coating is presence or absence in both the local transmittance microscopy and general transmittance analysis. Conclusions: The distribution of the transmittance measured by local transmission microscopy were changed when the various stimulus is applied to the lenses. These analyzes by local transmission microscopy can be utilized as a way to evaluate or determine the uniformity of the coating film or lens.

Measurement of picosecond laser pulsewidth and pulseshape by two-photon fluorescence and noncolloinear type I second harmonic generation method (이광자 형광법과 비공선 일종 이차고조파법에 의한 피코초 레이저 펄스폭과 펄스형 측정)

  • 한기호;박종락;이재용;김현수;엄기영;변재오;공흥진
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.251-259
    • /
    • 1996
  • Two-Photon Fluorescence (TPF) experiment measures temporal width of an amplified short laser pulse which has passed through a four-pass Nd: glass amplifier, after selecting a single pulse from pulse train Q-switched and mode-locked(QSML) in Nd:YLF master oscillator. Determination of pulsewidth and pulseshape was also made with detection of autocorrelation trace of CW mode-locked pulse train by using noncollinear type I Second Harmonic Generation (SHG) method. The observed TPF track showed various patterns, depending on pulse-selecting position in QSML pulse train. That is, autocorrelation of a pulse extracted at front of the train displayed smooth pulse shape, while one from the trailing part of the train created many sharp spikes and substructure in the pulse. By TPF method, pulsewidth was measured to be 44.4 ps with contrast ratio of 2.86 which enabled us to find out energy fraction of a pulse to total energy, (sum of pulse and background); we obtain the value of 0.62. Pulsewidth of 46.6ps was also acquired in another SHG experiment with the help of only mode-locked pulse train. On the other hand, we confirmed that shape of the pulse is close to $sech^2$ one as a result of fitting the SHG autocorrelation signal with various functions. With simulation using this $sech^2$ type of pulse, pulsewidth reduction of the beam, having passed through four-pass amplifier, was also verified.

  • PDF

Multi-channel Transimpedance Amplifier Arrays in Short-Range LADAR Systems for Unmanned Vehicles (무인차량용 단거리 라이다 시스템을 위한 멀티채널 트랜스임피던스 증폭기 어레이)

  • Jang, Young Min;Kim, Seung Hoon;Cho, Sang Bock;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.40-48
    • /
    • 2013
  • This paper presents multi-channel transimpedance amplifier(TIA) arrays in short-range LADAR systems for unmanned vehicles, by using a 0.18um CMOS technology. Two $4{\times}4$ channel TIA arrays including a voltage-mode INV-TIA and a current-mode CG-TIA are introduced. First, the INV-TIA consists of a inverter stage with a feedback resistor and a CML output buffer with virtual ground so as to achieve low noise, low power, easy current control for gain and impedance. Second, the CG-TIA utilizes a bias from on-chip bandgap reference and exploits a source-follower for high-frequency peaking, yielding 1.26 times smaller chip area per channel than INV-TIA. Post-layout simulations demonstrate that the INV-TIA achieves 57.5-dB${\Omega}$ transimpedance gain, 340-MHz bandwidth, 3.7-pA/sqrt(Hz) average noise current spectral density, and 2.84mW power dissipation, whereas the CG-TIA obtains 54.5-dB${\Omega}$ transimpedance gain, 360-MHz bandwidth, 9.17-pA/sqrt(Hz) average noise current spectral density, and 4.24mW power dissipation. Yet, the pulse simulations reveal that the CG-TIA array shows better output pulses in the range of 200-500-Mb/s operations.

All-fiber 1.5-kW-class Single-mode Yb-doped Polarization-maintaining Fiber Laser with 10 GHz Linewidth (전광섬유 MOPA 시스템 기반 10 GHz 선폭을 갖는 1.5 kW 단일모드 이터븀 첨가 편광유지 광섬유 레이저)

  • Jeong, Seongmook;Kim, Kihyuck;Kim, Taekyun;Lee, Sunghun;Yang, Hwanseok;Lee, Junsu;Lee, Kwang Hyun;Lee, Jung Hwan;Jo, Min-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.223-230
    • /
    • 2020
  • In this paper, we have studied the characteristics of stimulated Brillouin scattering (SBS) and mode instability (MI) in a ytterbium-doped polarization-maintaining fiber laser with master oscillator power amplifier configuration. We measured the laser output power and back-reflection spectrum for a variety of ytterbium-doped fibers and seed lights, to investigate the power-scaling limits of fiber lasers. By optimizing the laser structure, we demonstrated an all-fiber high-power polarization-maintaining fiber laser with near-diffraction-limited beam quality. The output power of 1.5 kW was achieved with a linewidth of 10 GHz, generated by pseudo-random binary sequence (PRBS) phase modulation. The beam quality M2 was about 1.15 at the maximum output power. The polarization extinction ratio (PER) was greater than 17 dB.

Efficient Second Harmonic Generation of a High-power Yb-doped Fiber MOPA Incorporating MgO:PPSLT (MgO:PPSLT를 이용한 고출력 Yb 광섬유 레이저 빔의 고효율 이차조화파 변환)

  • Song, Seungbeen;Park, Eunji;Park, Jong Sun;Oh, Yejin;Jeong, Hoon;Kim, Ji Won
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • In this paper, we report highly efficient second harmonic generation of continuous-wave Yb fiber lasers incorporating a periodically poled LiTaO3 device (MgO:PPSLT) as a frequency converter. The seed laser output from a Yb fiber master oscillator using a Fabry-Perot feedback cavity was amplified in a Yb fiber amplifier stage, yielding 28.5 W of linearly polarized output at 1064 nm in a beam with beam quality, M2, of ~1.07. Second harmonic generation was achieved by passing the laser beam through MgO:PPSLT. Under optimized conditions, we obtained 11.1 W of green laser output at 532 nm for an incident signal power of 25.0 W at 1064 nm, corresponding to a conversion efficiency of 44.4%. The detailed investigation to find the optimized operating conditions and prospects for further improvement are discussed.

Double-pass Second Harmonics Generation of Tunable CW Infrared Laser Beam of DOFA System in Periodically Poled LiNbO3 (PPLN 비선형 결정과 이중통과법을 이용한 DOFA 시스템에서 증폭된 연속발진형 파장가변 적외선 레이저광의 제 2고조파 발생)

  • Yoo, Kil-Sang;Jo, Jae-Heung;Ko, Kwang-Hoon;Lim, Gwon;Jeong, Do-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • The optimum conditions of second harmonic generation (SHG) can be successfully achieved experimentally using single pass and double pass methods of a pumping beam. The beam has a power of several Watts radiated by a DOFA (Diode Laser Oscillator & Fiber Amplifier) system, which is a high power CW wavelength tunable infrared laser system, in a PPLN (Periodically Poled MgO doped Lithium Niobate) nonlinear crystal. In the case of a single pass method, the parameters are the wavelength of 535 nm for SHG and the output power of 245 mW generated from the pumping input beam with wavelength of 1070 nm and the power of 2.45 W at phase matching temperature of $108.9^{\circ}C$. The conversion efficiency of SHG was 10%. In order to enhance the output of SHG, the double pass method of the SHG system of a PPLN using a concave mirror for the retroreflection and a pair of wedged flat windows for phase compensation was also presented. In this double pass system, we obtained the SHG output beam with the wavelength of 535 nm and the maximum power of 383 mW at optimum phase matching temperature of $108.5^{\circ}C$ by using an incident pumping beam with wavelength of 1070 nm and the power of 2.45 W. The maximum conversion efficiency is 15.6%, which is more than that of the single pass method.

A Study of the Fiber Fuse in Single-mode 2-kW-class High-power Fiber Amplifiers (단일 모드 2 kW급 고출력 광섬유 증폭기 내의 광섬유 용융 현상에 관한 연구)

  • Lee, Junsu;Lee, Kwang Hyun;Jeong, Hwanseong;Kim, Dong Jun;Lee, Jung Hwan;Jo, Minsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • In this paper, we experimentally investigate the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers, depending on the cooling method at the splicing point. We measured the temperature of the splicing point between the pump-signal combiner and gain fiber as a function of laser output power. The temperature of the splicing point increased from 20 to 32℃ with a slope of 0.01℃/W, up to 1.2 kW of laser output power. At higher powers the temperature of the splicing point increased dramatically, with a slope of 0.08℃/W. After that, the fiber amplifier was destroyed during operation at 1.96 kW of output power by fiber fuse. The bullet shape, a common feature of fiber fuse, was observed in the damaged passive fiber core of the pump-signal combiner. Later, we adopted an improved water-cooled cold plate to increase the cooling efficiency at the splicing point, and investigated the laser output power. The temperature at the splicing point was 35.8℃ with a temperature-rise slope of 0.007℃/W at the maximum output power of 2.05 kW. The beam quality M2 was measured to be less than 1.3, and the output beam's profile was a stable Gaussian shape. Finally, neither fiber fuse nor mode instability was observed in the fiber amplifier at the maximum output power of 2.05 kW.

Large-area High-speed Single Photodetector Based on the Static Unitary Detector Technique for High-performance Wide-field-of-view 3D Scanning LiDAR (고성능 광각 3차원 스캐닝 라이다를 위한 스터드 기술 기반의 대면적 고속 단일 광 검출기)

  • Munhyun Han;Bongki Mheen
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.139-150
    • /
    • 2023
  • Despite various light detection and ranging (LiDAR) architectures, it is very difficult to achieve long-range detection and high resolution in both vertical and horizontal directions with a wide field of view (FOV). The scanning architecture is advantageous for high-performance LiDAR that can attain long-range detection and high resolution for vertical and horizontal directions. However, a large-area photodetector (PD), which is disadvantageous for detection speed, is essentially required to secure the wide FOV. Thus we propose a PD based on the static unitary detector (STUD) technique that can operate multiple small-area PDs as a single large-area PD at a high speed. The InP/InGaAs STUD PIN-PD proposed in this paper is fabricated in various types, ranging from 1,256 ㎛×949 ㎛ using 32 small-area PDs of 1,256 ㎛×19 ㎛. In addition, we measure and analyze the noise and signal characteristics of the LiDAR receiving board, as well as the performance and sensitivity of various types of STUD PDs. Finally, the LiDAR receiving board utilizing the STUD PD is applied to a 3D scanning LiDAR prototype that uses a 1.5-㎛ master oscillator power amplifier laser. This LiDAR precisely detects long-range objects over 50 m away, and acquires high-resolution 3D images of 320 pixels×240 pixels with a diagonal FOV of 32.6 degrees simultaneously.