• Title/Summary/Keyword: optical amplifier

Search Result 438, Processing Time 0.024 seconds

Performance Evaluation of an All-optical Automatic Gain-controlled Erbium-doped Fiber Amplifier for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems (자유 공간 광통신 시스템에서 신호 변동 억제를 위한 전광 자동 이득 조절 어븀 첨가 광섬유 증폭기의 성능 평가)

  • Jeong, Yoo Seok;Kim, Chul Han
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.3
    • /
    • pp.99-105
    • /
    • 2022
  • We have evaluated the performance of an all-optical automatic gain-controlled (AGC) erbium-doped fiber amplifier (EDFA) to suppress the optical signal fluctuation induced by atmospheric turbulence in terrestrial free-space optical communication systems. In our measurements, the input power into the EDFA was set to be -30 dBm and -10 dBm to operate the amplifier in the small-signal and saturation regions, respectively. The fluctuations in the optical signal were emulated with an acousto-optic modulator driven with a sinusoidal voltage. From the measured results, we have found that an all-optical AGC EDFA could suppress the optical signal fluctuation effectively, as long as the EDFA operated in the small-signal region with a high feedback amplified spontaneous emission (ASE) power.

Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses

  • Liu, Yan;Wu, Kan;Li, Nanxi;Lan, Lanling;Yoo, Seongwoo;Wu, Xuan;Shum, Perry Ping;Zeng, Shuguang;Tan, Xinyu
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.357-361
    • /
    • 2013
  • A regenerative Er-doped fiber amplifier system for a high-repetition-rate optical pulse train is investigated for the first time. A signal pulse train with a wavelength tuning range of 18 nm is produced by a passive mode-locked fiber laser based on a nonlinear polarization rotation technique. In order to realize the amplification, an optical delay-line is used to achieve time match between the pulses' interval and the period of pulse running through the regenerative amplifier. The 16 dB gain is obtained for an input pulse train with a launching power of -30.4 dBm, a center wavelength of 1563.4 nm and a repetition rate of 15.3 MHz. The output properties of signal pulses with different center wavelengths are also discussed. The pulse amplification is found to be different from the regenerative amplification system for CW signals.

The effect of gain recovery at the optical fiber amplifier by the input pulse train (광섬유 증폭기에서의 입력 펄스 열에 의한 Cain Recovery 특성)

  • 이재명;이영우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.459-463
    • /
    • 2002
  • We studied the effect of gain recovery at the optical fiber amplifier by the input pulse trains We also theoretically analyzed the limitation of the saturation and recovery time for the PDFA(Praseodymium-Doped Fiber Amplifier) which has the spectral gain at 1.3${\mu}{\textrm}{m}$ band. We can predict the interval between the pulse train, pump power, and the effect of the saturation and recovery time which is affected to the amplification of the optical pulse.

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

The effect of gain recovery at the optical fiber amplifier by the input pulse train (광섬유 증폭기에서의 입력 펄스 열에 의한 Cain Recovery 특성)

  • 이재명;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.505-508
    • /
    • 2002
  • We studied the effect of gain recovery at the optical fiber amplifier by the input pulse trains. We also theoretically analyzed the limitation of the saturation and recovery time for the PDFA(Praseodymium-Doped Fiber Amplifier) which has the spectral gain at 1.3${\mu}{\textrm}{m}$ band. We can predict the interval between the pulse train, pump power, and the effect of the saturation and recovery time which is affected to the amplification of the optical pulse.

  • PDF

Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier

  • Afkhami, Hossein;Mowla, Alireza;Granpayeh, Nosrat;Hormozi, Azadeh Rastegari
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • An optimal wideband gain flattened hybrid erbium-doped fiber amplifier/fiber Raman amplifier (EDFA/FRA) has been introduced. A new and effective optimization method called particle swarm optimization (PSO) is employed to find the optimized parameters of the EDFA/FRA. Numerous parameters which are the parameters of the erbium-doped fiber amplifier (EDFA) and the fiber Raman amplifier (FRA) define the gain spectrum of a hybrid EDFA/FRA. Here, we optimize the length, $Er^{3+}$ concentration, and pump power and wavelength of the EDFA and also pump powers and wavelengths of the FRA to obtain the flattest operating gain spectrum. Hybrid EDFA/FRA with 6-pumped- and 10-pumped-FRAs have been studied. Gain spectrum variations are 1.392 and 1.043 dB for the 6-pumped- and 10-pumped-FRAs, respectively, in the 108.5 km hybrid EDFA/FRAs, with 1 mW of input signal powers. Dense wavelength division multiplexing (DWDM) system with 60 signal channels in the wavelength range of 1529.2-1627.1 nm, i.e. the wide bandwidth of 98 nm, is studied. In this work, we have added FRA's pump wavelengths to the optimization parameters to obtain better results in comparison with the results presented in our previous works.

10 Gbps Transimpedance Amplifier-Receiver for Optical Interconnects

  • Sangirov, Jamshid;Ukaegbu, Ikechi Augustine;Lee, Tae-Woo;Cho, Mu Hee;Park, Hyo-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • A transimpedance amplifier (TIA)-optical receiver (Rx) using two intersecting active feedback system with regulated-cascode (RGC) input stage has been designed and implemented for optical interconnects. The optical TIA-Rx chip is designed in a 0.13 ${\mu}m$ CMOS technology and works up to 10 Gbps data rate. The TIA-Rx chip core occupies an area of 0.051 $mm^2$ with power consumption of 16.9 mW at 1.3 V. The measured input-referred noise of optical TIA-Rx is 20 pA/${\surd}$Hz with a 3-dB bandwidth of 6.9 GHz. The proposed TIA-Rx achieved a high gain-bandwidth product per DC power figure of merit of 408 $GHz{\Omega}/mW$.

Investigation of Amplifying Mechanism in an t-Band Erbium-Doped Fiber Amplifier Pumped by a 980 nm Pump

  • Lee, Dong-Han;Lee, Han-Hyub;Oh, Jung-Mi;Kim, Byung-Jun
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.67-71
    • /
    • 2003
  • For a more detailed understanding of the mechanism of an L-band erbium-doped fiber amplifier, we investigated 980 nm absorption, signal amplification and forward and backward amplified spontaneous emission along the erbium-doped fiber. In addition, we compared performances of the erbium-doped fiber amplifier with and without a fiber Bragg grating.

A novel 10 Gbit/s all-optical NOR logic gate (새로운 10 Gbit/s 전광 NOR 논리 게이트)

  • Byun, Young-Tae;Kim, Jae-Heon;Jeon, Young-Min;Lee, Seok;Woo, Duk-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.530-534
    • /
    • 2003
  • A novel all-optical NOR gate is proposed and demonstrated for the first time by use of gain saturation in a semiconductor optical amplifier (SOA). It is operated by the nonlinearity of the SOA gain. Hence, to obtain sufficient gain saturation of the SOA, pump signals are amplified by an Er-doped fiber amplifier at the input of the SOA. The operation characteristics of the all-optical NOR gate are successfully measured at 10 Gbit/s.

All-optical Integrated Parity Generator and Checker Using an SOA-based Optical Tree Architecture

  • Nair, Nivedita;Kaur, Sanmukh;Goyal, Rakesh
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.400-406
    • /
    • 2018
  • The Semiconductor Optical Amplifier (SOA)-based Mach-Zehnder interferometer is a major contributor in all-optical digital processing and optical computation. Optical tree architecture provides one of the new, alternative schemes for integrated all-optical arithmetic and logical operations. In this paper, we propose an all-optical 3-bit integrated parity generator and checker using SOA-MZI-based optical tree architecture. The proposed scheme, able to process input signals at a desired operating wavelength, has been characterized using RZ-modulated signals at 10 Gbps. The maximum extinction ratios achieved at the output of the parity generator and checker are 10 dB and 8 dB respectively.