• Title/Summary/Keyword: optical amplification gain

Search Result 55, Processing Time 0.023 seconds

9.6 dB Gain at a 1310 nm Wavelength for a Bismuth-doped Fiber Amplifier

  • Seo, Young-Seok;Lim, Chang-Hwan;Fujimoto, Yasushi;Nakatsuka, Masahiro
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.63-66
    • /
    • 2007
  • A 9.6 dB gain is observed at 1310 nm in a 5.0 cm bismuth-doped silica fiber. A launched pump power of 100 mW was obtained using an 810-nm laser diode. We demonstrated the simultaneous optical amplification at two wavelengths near second telecommunication windows, which is the range of zero-dispersion for silica fibers.

Fabrication of an Optical Fiber Amplifier Using Long-period Fiber Gratings Formed by Periodically Arrayed Metal Wire (금속선의 주기적 배열로 유도된 장주기 격자를 이용한 이득 평탄화된 광섬유 증폭기 제작)

  • Sohn, Kyung-Rak;Hwang, Woong;Shim, June-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.833-837
    • /
    • 2007
  • In this study, we have fabricated a gain flattened erbium-doped optical fiber amplifier. Gain flattening filters were realized by the strain-induced long period fiber gratings, which are made of periodically arrayed metal wires. Using the filter of $550{\mu}m$ period, spontaneous emission amplified at C-band wavelength by a 980nm pumping laser was flattened within 1dB of gain ripple. The performance of the simultaneous multi channel amplification was measured using a fabry-perot laser diode. Amplification ratio was above 20dB. This amplifier can be applied to the long distance transmission system based on a wavelength division multiplexing for boosting an attenuated signal.

Zero Cerenkov Radiation Angle Effect in Optical Parametric Amplification in the Cerenkov-idler Configuration (Cerenkov-idler configuration 광 매개증폭에서의 0° 체렌코프 복사각도 효과)

  • Suh, Zung-Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.225-232
    • /
    • 2014
  • Optical parametric amplification has been analyzed for the Cerenkov-idler configuration in planar waveguides. The coupled-mode theory is employed for the analysis. The coupled-mode equations are derived and the approximate analytic solution is obtained for no pump depletion. From the analytic solution, it is shown that the signal power gain can be enhanced as the Cerenkov radiation angle of the idler approaches to zero. The numerical example is also shown for the effect of the Cerenkov radiation angle approaching zero.

The effect of gain recovery at the optical fiber amplifier by the input pulse train (광섬유 증폭기에서의 입력 펄스 열에 의한 Cain Recovery 특성)

  • 이재명;이영우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.459-463
    • /
    • 2002
  • We studied the effect of gain recovery at the optical fiber amplifier by the input pulse trains We also theoretically analyzed the limitation of the saturation and recovery time for the PDFA(Praseodymium-Doped Fiber Amplifier) which has the spectral gain at 1.3${\mu}{\textrm}{m}$ band. We can predict the interval between the pulse train, pump power, and the effect of the saturation and recovery time which is affected to the amplification of the optical pulse.

The effect of gain recovery at the optical fiber amplifier by the input pulse train (광섬유 증폭기에서의 입력 펄스 열에 의한 Cain Recovery 특성)

  • 이재명;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.505-508
    • /
    • 2002
  • We studied the effect of gain recovery at the optical fiber amplifier by the input pulse trains. We also theoretically analyzed the limitation of the saturation and recovery time for the PDFA(Praseodymium-Doped Fiber Amplifier) which has the spectral gain at 1.3${\mu}{\textrm}{m}$ band. We can predict the interval between the pulse train, pump power, and the effect of the saturation and recovery time which is affected to the amplification of the optical pulse.

  • PDF

270-W 15-kHz MOPA System Based on Side-pumped Rod-type Nd:YAG Gain Modules

  • Cha, Yong-Ho;Yang, Myoung-Yerl;Ko, Kwang-Hoon;Lim, Gwon;Han, Jae-Min;Park, Hyun-Min;Kim, Taek-Soo;Roh, Si-Pyo;Jeong, Do-Young
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.298-302
    • /
    • 2008
  • We have developed a 270-W 15-kHz MOPA system based on side-pumped rod-type Nd:YAG gain modules. The master oscillator is a 3-W 15-kHz $TEM_{00}$ $Nd:YVO_4$ laser with a pulse duration of 30 ns. To preserve the high beam quality during the amplification, we use image relay and polarization rotation which can simultaneously compensate for thermal lensing and thermal birefringence generated in the rod-type gain modules. After the amplification to 270 W with six rod-type gain modules, the beam quality factor ($M^2$) of the amplified laser beam is 5-10, and the pulse duration is maintained at 30 ns.

A Numerical Analysis of the Amplification Properties of the Regenerative Amplifier (재생증폭기의 증폭특성에 관한 수치해석)

  • 김남희;김병태
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.67-73
    • /
    • 1994
  • The simulation code was developed to analyze the amplification properties of the regenerative amplifier, such as gain narrowing, nonlinear effect, and energy saturation. To reduce gain narrowing in the regenerative amplifier, the input pulse with a symmetrical shape and the same center wavelength of the active medium should be amplified in the active medium with a broad fluorescence linewidth. In this respect, Ti:Sapphire with a low nonlinear refractive index, a high saturation fluence, and a broad fluorescence linewidth is the most appropriate medium for the regenerative amplifier. The knowledge and the important parameters were acquired for the optimum design of the regenerative amplifier.

  • PDF

All-optical Regenerator Using Semi-reflective Semiconductor Optical Amplifier

  • Kim T.Y.;Kim J.Y.;Han S.K.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • We have proposed and theoretically verified an optical regenerator using a single semi-reflective semiconductor optical amplifier (SR-SOA). To explain the operation characteristics and the operation condition of the proposed opticalregenerator, the simplified gain model for the SR-SOA is introduced and confirmed by comparing the result of the SOA simulation based on the transfer matrix method (TMM). The simulation results show that both extinction ratio (ER) enhancement and signal amplification can be achieved in the proposed regenerator.

Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses

  • Liu, Yan;Wu, Kan;Li, Nanxi;Lan, Lanling;Yoo, Seongwoo;Wu, Xuan;Shum, Perry Ping;Zeng, Shuguang;Tan, Xinyu
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.357-361
    • /
    • 2013
  • A regenerative Er-doped fiber amplifier system for a high-repetition-rate optical pulse train is investigated for the first time. A signal pulse train with a wavelength tuning range of 18 nm is produced by a passive mode-locked fiber laser based on a nonlinear polarization rotation technique. In order to realize the amplification, an optical delay-line is used to achieve time match between the pulses' interval and the period of pulse running through the regenerative amplifier. The 16 dB gain is obtained for an input pulse train with a launching power of -30.4 dBm, a center wavelength of 1563.4 nm and a repetition rate of 15.3 MHz. The output properties of signal pulses with different center wavelengths are also discussed. The pulse amplification is found to be different from the regenerative amplification system for CW signals.