• Title/Summary/Keyword: optical amplification gain

Search Result 55, Processing Time 0.02 seconds

Design and characteristics of 10Gbps$\times$64 ch. wavelength multiplexed optical signal amplification unit with 1530~1560 nm and 1570~1600 nm gain band (1530~1560nm와 1570~1600nm의 이득 대역을 갖는 10Gbps$\times$64채널 파장 다중화된 광신호 증폭 유니트의 설계 및 특성 측정)

  • 이정찬;정희상;주무정;김광준;이종현
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.200-204
    • /
    • 2001
  • The structural design and the measured characteristics of optical signal amplification unit for 640 Gbps (10 Gbps$\times$64 ch.) WDM transmission systems are reported. The unit is composed of two sub gain block units for the amplification of C-band (1530-1560 nm) and L-band (1570-1600 nm), respectively. Programmable microprocessors monitor the states of operation and optimize the optical output conditions. Each sub gain block unit can maintain total optical output power of +21 dBm with gain flatness of < 1 dB and noise figure of <7.2 dB for the input power in the dynamic range from-5 to +1 dBm.+1 dBm.

  • PDF

50 cm of Zirconia, Bismuth and Silica Erbium-doped Fibers for Double-pass Amplification with a Broadband Mirror

  • Markom, Arni Munira;Muhammad, Ahmad Razif;Paul, Mukul Chandra;Harun, Sulaiman Wadi
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.32-38
    • /
    • 2022
  • Erbium-doped fiber amplifiers (EDFAs) have saturated the technological market but are still widely used in high-speed and long-distance communication systems. To overcome EDFA saturation and limitations, its erbium-doped fiber is co-doped with other materials such as zirconia and bismuth. This article demonstrates and compares the performance using three different fibers as the gain medium for zirconia-erbium-doped fibers (Zr-EDF), bismuth-erbium-doped fibers (Bi-EDF), and commercial silica-erbium-doped fibers (Si- EDF). The optical amplifier was configured with a double-pass amplification system, with a broadband mirror at the end of its configuration to allow double-pass operation in the system. The important parameters in amplifiers such as optical properties, optical amplification and noise values were also examined and discussed. All three fibers were 0.5 m long and entered with different input signals: 30 dBm for low input and 10 dBm for high input. Zr-EDF turned out to be the most relevant optical amplifier as it had the highest optical gain, longest transmission distance, highest average flatness gain with minimal jitter, and relevant noise figures suitable for the latest communication technology.

Design of Hybrid Optical Amplifiers for High Capacity Optical Transmission

  • Kim, Seung-Kwan;Chang, Sun-Hyok;Han, Jin-Soo;Chu, Moo-Jung
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.81-96
    • /
    • 2002
  • This paper describes our design of a hybrid amplifier composed of a distributed Raman amplifier and erbium-doped fiber amplifiers for C- and L-bands. We characterize the distributed Raman amplifier by numerical simulation based on the experimentally measured Raman gain coefficient of an ordinary single mode fiber transmission line. In single channel amplification, the crosstalk caused by double Rayleigh scattering was independent of signal input power and simply given as a function of the Raman gain. The double Rayleigh scattering induced power penalty was less than 0.1 dB after 1000 km if the on-off Raman gain was below 21 dB. For multiple channel amplification, using commercially available pump laser diodes and fiber components, we determined and optimized the conditions of three-wavelength Raman pumping for an amplification bandwidth of 32 nm for C-band and 34 nm for L-band. After analyzing the conventional erbium-doped fiber amplifier analysis in C-band, we estimated the performance of the hybrid amplifier for long haul optical transmission. Compared with erbium-doped fiber amplifiers, the optical signal-to-noise ratio was calculated to be higher by more than 3 dB in the optical link using the designed hybrid amplifier.

  • PDF

Optical Parametric Chirped-pulse Amplification of Femtosecond Ti:sapphire Laser Pulses by Using a BBO Crystal

  • Cha, Yong-Ho;Lee, Ki-Tae;Nam, Seong-Mo;Yoo, Byoung-Duk;Rhee, Yong-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • We have characterized the optical parametric chirped-pulse amplification of femtosecond Ti:sapphire laser pulses by using a BBO crystal. It is numerically verified that a high gain and a broad gain bandwidth can be obtained with a 532-nm pump laser. The dependence of the gain profile of OPA on phase matching angles, pump intensity, and crystal length is numerically investigated. Experimental results shows that the temporal fluctuation of a pump laser causes the modulation of an amplified spectrum in OPCPA.

Nonlinear interferometric optical parametric amplifier (비선형 간섭계 파라메트릭 광증폭기)

  • Lee, Sang-Yong;Kim, Jae-Kwan;Jeong, Je-Myung;Chang, Ho-Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • We obtain a solution of optical parametric amplification using self-phase modulation within the Kerr media in a nonlinear interferometer with two arms. We show that it is equivalent to the solution driven by four-wave mixing and that the solution of parametric amplification is suitable to generate a parametric gain. We obtain a derivative of power gain with respect to the propagation distance and show that gain-saturation can occur as the beam propagates along the nonlinear arms. We also show a bandwidth characteristic of the parametric amplification driven by nondegenerate four-wave mixing. Numerical examples are given to illustrate that the solution of the parametric amplification can be applied to design and analysis of all-optical devices such as all-optical amplifiers.

An All-Optical Gain-Controlled Amplifier for Bidirectional Transmission

  • Choi, Bo-Hun;Hong, Kyung-Jin;Kim, Chang-Bong;Won, Yong-Hyub
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • A novel all-optical gain-controlled (AOGC) bidirectional amplifier is proposed and demonstrated in a compact structure. The AOGC function using fiber Bragg grating (FBG) pairs controls both directional signals independently, and combinations of optical interleavers and isolators suppress Rayleigh backscattering (RB) noise. The amplifier achieves high and constant gain with a wide dynamic input signal range and low noise figure. The performance does not depend on the input signal conditions, whether static-state or transient signals, or whether there is symmetric or asymmetric data traffic on bidirectional transmission. Transmission comparison experiments between invariable symmetrical and random variable asymmetric bidirectional data traffic verify that the all-optical gain control and bidirectional amplification functions are successfully combined into this proposed amplifier.

  • PDF

Structure optimization of a L-band erbium-doped fiber amplifier for 64 optical signal channels of 50 GHz channel spacing (50 GHz 채널 간격의 64 채널 광신호 전송을 위한 L-band EDFA의 구조 최적화)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1666-1671
    • /
    • 2022
  • The structure of a high-power gain-flattened long wavelength band (L-band) optical amplifier was optimized, which was implemented for 64-channel wavelength division multiplexed optical signals with a channel spacing of 50 GHz. The output characteristics of this L-band amplifier were measured and analyzed. The amplifier of the optimized two-stage amplification configuration had a flattened gain of 20 dB within 1 dB deviation between 1570 and 1600 nm for -2 dBm input power condition. The noise figure under this condition was minimized to within 6 dB in the amplification bandwidth. The gain flattening was realized by considering only the characteristics of gain medium in the amplifier without using additional optical or electrical devices. The proposed amplifier consisted of two stages of amplification stages, each of which was based on the erbium-doped fiber amplifier (EDFA) structure. The erbium-doped fiber length and pumping structures in each stage of the amplifier were optimized through experiments.

Optimum Gain Distribution of the Ampilfiers in High Power YLF($Nd^{3+}$)-Phosphate Glass($Nd^{3+}$) Laser System

  • CHi, Kyeong-Koo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.20-25
    • /
    • 1989
  • The nonlinear, time dependent photon transport equations of Frantz and Nodvik, which describe the amplification of an optical pulse in an active medium, are modified to a simpler equation which describes only the amplification of energy. with this equation, the output energy of the high power YLF(Nd3+)-Phosphate Glass(Nd3+) Laser System is calculated. When the stored energy density Est is 0.10J/㎤, 0.16J/㎤, 0.228J/㎤, and 0.50J/㎤, and with the assumption of uniform population inversion density, the final output energy of this laser system is 5.38J, 176J, 317J, and 283J, respectively. The gain saturation causes distortion of the output beam. This phenomenon is described in detail at the first three rod amplifier systems in the case of E=0.228J/㎤. The peak current and decay time constant of the flashlamps, which are used to obtain population inversion in the active medium, are investigated. The flashlamp driving circuit which has optimum operational performance should have {{{{ SQRT { LC} }} time about 100$\mu$sec.

  • PDF

Forward Raman amplification for the narrow band Stokes line by double-pass fiber Raman scheme in multi-mode fiber

  • Hwang, In-Duk;Lee, Choo-Hie
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.238-239
    • /
    • 2000
  • The optical fibers are an interesting medium for effective tunable optical frequency conversion in the spectral range of UV, Visible, and near-IR through the nonlinear processes. A number of papers for developing the wideband and flat-gain amplifier for the WDM system applications through the combination of EDFA or thulium-doped fluoride fiber amplifier and Raman amplifier, are reported$^{(1)}$ . Even though a variety of papers related to Raman amplifications are published, the amplification with the feedback of the residual pump is not investigated yet. Accordingly, in this paper, we report the characteristics of forward Raman amplification by the simple and double-pass fiber Raman configuration through the feedback of residual pump beam. (omitted)

  • PDF

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.