• Title/Summary/Keyword: optic flow

Search Result 61, Processing Time 0.029 seconds

Infant Retinal Images Optic Disk Detection Using Active Contours

  • Charmjuree, Thammanoon;Uyyanonvara, Bunyarit;Makhanov, Stanislav S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.312-316
    • /
    • 2004
  • The paper presents a technique to identify the boundary of the optic disc in infant retinal digital images using an approach based on active contours (snakes). The technique can be used to be develop a automate system in order to help the ophthalmologist's diagnosis the retinopathy of prematurity (ROP) disease which may occurred on preterm infant,. The optic disc detection is one of the fundamental step which could help to create an automate diagnose system for the doctors we use a new kind of active contour (snake) method has been developed by Chenyang et. al. [1], based on a new type of external force field, called gradient vector flow, or GVF. GVF is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. The testing results on a set of infant retinal ROP images verify the effectiveness of the proposed methods. We show that GVF has a large capture range and it's able to move snakes into boundary concavities of optic disc and finally the optic disk boundary was determined.

  • PDF

A COMPUTATIONAL STUDY OF ESTIMATING AERO-OPTIC BORESIGHT ERROR FOR A HYPERSONIC FLIGHT VEHICLE (극초음속 비행체의 공기광학 조준오차 예측을 위한 전산해석 연구)

  • Lim, Seol;Chae, Hoon;Kim, Jongju
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • Aero-optic phenomena cause the image position displacement on an imaging plane of the airborne optical/IR systems. Particularly, the aero-optic boresight error(BSE) is important factor for homing, positioning and aiming applications of hypersonic flight interceptor missile. In this paper, an estimating method of aero-optic BSE for a hypersonic flight vehicle is studied. A ray tracing method and a transform method of refractive index fields from flow density fields are combined with computational fluid dynamics(CFD) method.

Effects of Convective Flow Fields on the Physical Vapor Transport Processes of $Hg_2Cl_2$ Crystals (염화제일수은 승화법 단결정 성장 공정에서의 대류 현상 연구)

  • Park, Jang-Woo;Kim, Geug-Tae;M.E. Glicksman
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.39-43
    • /
    • 1997
  • Mercurous chloride (Hg$_2$Cl$_2$) has many advantages in its applications to acousto-optic, and opto-electronic devices because it has the unique properties of a broad transmisson range, well into the far infra-red, a low acoustic velocity, a large birefringence, and a high acousto-optic figure of merit[1]. Hg$_2$Cl$_2$ has a high vapor pressure, hence single crystals are usually grown by physical vapor transport(PVT) method in closed silica glass ampoules. We discuss the application of the laser Doppler velocimetry to measure the flow field inside a closed ampoule. The experimental results, are discussed its relationship to computational model and compared to their expectations.

  • PDF

불포화 토양내에서 가스상 오존 측정을 위한 광섬유센서의 적용

  • 정해룡;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.111-114
    • /
    • 2003
  • A new monitoring system has been developed for in-situ and realtime measurement of ozone transport in unsaturated porous media using a fiber optic sensor. The calibration of the fiber optic transflection dip probe (FOTDP) system was successfully carried out at various ozone concentrations using a column with length of 30 cm and diameter of 5 cm packed with glass beads, which don't react with gaseous ozone. The breakthrough curves (BTCs) of ozone was obtained by converting the normalized intensity into ozone concentration. The FOTDP system reflected the ideal transport phenomena of gas phase ozone at various flow rates. The FOTDP system worked well for in-situ monitoring of gas phase ozone at various water saturations and in presence of SOM. However, the FOTDP system did not measure the ozone concentration at more than 70% water saturation.

  • PDF

Retardation Analysis of Plastic Optic Lens according to Injection Speed Variation (사출속도 변화에 따른 플라스틱 광학렌즈의 위상차 해석)

  • Park, Soo-Hyun;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • This study focuses on simulation technology in the injection molding process for plastic optic lenses. The CAE program 3D TIMON was used to predict retardation, flow patterns and warpage deformation. The results were compared to the results of optic lenses as measured using the WPA-100 retardation measurement device with injection molding CAE for retardation predictions. According to the analysis and measured results, the distributions of retardation between the CAE results and the measurement results were similar. It was also confirmed that varying the injection speed had an effect on the injection pressure, warpage deformation and retardation distribution. As the injection speed increases, the injection pressure also increases and warpage deformation decreases. However, as the injection speed increases, the retardation distribution deteriorates.

Fabrication of a low-power 1×2 polymeric thermo-optic switch with a trench structure (트렌치 구조를 이용한 저전력 1×2 폴리머 열 광학 스위치의 제작)

  • 여동민;김기홍;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • A low-power $1{\times}2$ polymeric thermo-optic switch with a trench structure is proposed and fabricated. The trench structure in the optimized region slows down the heat flow from the electrodes, which contributes to the reduction of power consumption. The temperature distribution in the polymer layers has been adjusted to increase the temperature gradient between the two arms of the Y-branch. For comparison, a $1{\times}2$ polymeric thermo-optic switch with no trench structure is fabricated together on the same substrate. In the device with a trench structure, the measured crosstalk is less than -17.0 dB for TE polarization.-15.0 dB for TM polarization. The power consumption is about 66 mW, which is 25% less than that of the device with no trench structure.

Perception of heading direction in dynamic random-dot and real-image motions (역동적인 무선점 및 실제영상 운동에서 관찰자의 진행 방향 지각)

  • 오창영;정찬섭;김정훈
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 1999
  • We investigated whether human could perceive the heading direction from the optic flow made from random dots and real images simulating the motion of the observer and objects. When an object moves across the focus of expansion(FOE) in random dot simulation. the observer perceived the focus of expansion biased toward the motion direction of the object. supporting the hypothesis that the direction repulsion is produced between the expansional and the horizontal planar motion components. With real image display observers tended to perceive one's heading direction biased toward the c center of the scene regardless of the direction and position of moving 0bcts. And it was observed that the deeper the depth of the background was the larger the judgment error was. These results suggest it is more likely that human depends on different cues than the optic flow when they perceive or judge one's heading direction in the real environment.

  • PDF

Reduction of Birefringence and Weld-Line using Over-Flow in Injection Compression Molding for Optic Lens (광학렌즈의 사출압축성형에서 오버플로우를 이용한 웰드라인과 복굴절 저감)

  • Kong, Ki-Hwan;Lee, Jin-Hyo;Kang, Byung-Ook;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.95-100
    • /
    • 2018
  • This study has focused on the weld-line and birefringence reduction of a plastic optic lens using over and CAE analysis in injection compression molding. A concave lens, which has a thin thickness in the center and a large difference in thickness between the center and the periphery, often causes weld-line defects during injection molding. CAE analysis has been applied to optimize the overflow design in order to reduce the weld-line defects and the polarization defects. To reduce the weld line and birefringence defects, overflow design and application using CAE analysis show that the measured birefringence values of the specimens before the overflow application were 46.8nm and 36.9nm, and the values after the over-flow application were 13.6nm and 14.0nm. From the experimental results, it is confirmed that birefringence is greatly improved when overflow is applied.

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

The properties of optical glass of BaO-GeO2-La2O3 system with ZnO (ZnO가 포함된 BaO-GeO2-La2O3 계 광학 유리 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Hwang, Jonghee;Lee, Youngjin;Jeon, Dae-Woo;Kim, Sun-Woog;Ra, Yong-Ho;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.208-214
    • /
    • 2019
  • The glass of $BaO-GeO_2-La_2O_3-ZnO$ system with a transmittance of more than 75 % at mid-wave infrared (MWIR) region in the range of $3{\mu}m$ to $5{\mu}m$ is manufactured and its property is evaluated. After selecting construction that can melt glass through flow button test, $BaO-GeO_2-La_2O_3$ system where 10 mol%, 20 mol% of ZnO were added respectively were melted at $1350^{\circ}C$ for 1 hour and $BaO-GeO_2-La_2O_3$ system of glass was manufactured. Among them, with 20 mol% of ZnO, 16 mol% BaO-56 mol% $GeO_2-8mol%$ $La_2O_3-16mol%$ ZnO system of glass was found to has less than $660^{\circ}C$ of glass transition temperature, more than 1.70 of refractive index, and more than 530 of knoop hardness. Therefore, it is concluded that glass of $BaO-GeO_2-La_2O_3-ZnO$ system of glass with 20 mol% ZnO has good melting conditions at low temperatures and excellent optical properties, thus, can be utilized for special optical materials field.