Freediving, an underwater leisure sport that involves diving without the use of a breathing apparatus, has gained popularity among younger demographics through the viral spread of images and videos on social media platforms. This study employs prominent Big Data analysis techniques, including text mining, Latent Dirichlet Allocation (LDA) topic analysis, and opinion mining to explore the keywords associated with freediving suits over the past five years. The research aims to analyze the rapidly evolving market trends of freediving suits and the increasingly complex and diverse consumer perceptions to provide foundational data for activating the freediving suit market and developing strategies for sustained growth. The study identified the keyword 'size' related to freediving suits and conducted opinion mining on 'freediving suit sizes'. Although the results showed a higher positive than negative sentiment, negative keywords were also extracted, indicating the need to understand and mitigate the negative factors associated with 'size'. The findings offer vital guidelines for the advancement of the freediving suit market and enhancing consumer satisfaction. This study is important as it contributes foundational data for continuous growth strategies of the freediving suit market.
본 연구에서 제안하는 시스템은 인터넷 상에 존재하는 여러 웹사이트들에 흩어져 있는 웹 콘텐츠에서 사용자 의견 정보들을 자동 추출 및 분석함으로써, 긍정/부정 의견별로 검색 및 통계를 확인할 수 있는 의견 검색 서비스를 제공한다. 그 결과 의견 검색 사용자들은 특정 키워드에 대하여 다른 사용자들의 의견을 손쉽게 한눈에 검색 및 모니터링하는 시스템을 용이하게 사용할 수 있으며, 웹 콘텐츠에서의 의견 추출 및 분석하는 기능을 제공받는다. 제안한 기법들은 다른 기법들과의 비교 실험을 수행하여 실제 성능이 우수함을 증명하였다. 성능 평가는 긍정/부정 의견 정보를 추출하는 기능의 성능 평가, 다국어 정보 검색을 위한 동적 윈도우 기법과 토크나이저 기법을 적용한 성능 평가, 그리고 정확한 다국어 음차표기를 추출 기법에 성능 평가를 실시하였다. 그 적용 사례로 대표적인 영화 리뷰 문장과 위키디피아 실험 데이터를 대상으로 실험하고 그 결과를 분석하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3169-3181
/
2015
Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.
Opinion mining and sentiment analysis(OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2007-2016. For the literature analysis, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, research areas.
본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.
오피니언 마이닝은 문서로부터 의견을 추출하는 텍스트 마이닝의 응용분야로 현재 활발한 연구가 진행되고 있다. 대부분의 관련 연구는 특정 제품군에 대해서 주어진 특징별로 긍정과 부정 평가를 나누는 감성분류에 초점을 맞추고 있다. 하지만 제품별로 강조되는 특성들을 구별해내는 연구는 거의 이루어지고 있지 않다. 본 논문에서는 특성별로 오피니언 문서들을 분류하고, 이를 이용하여 특정 제품군에 대해서 제품별로 강조되는 특성들을 선별하는 기법을 제안한다. 제안된 기법에서는 텍스트 클러스터링을 활용하였으며, 새로운 유사도 계산 방식을 사용하였다. 또한 실험을 통하여 제안된 방법의 유용성을 증명하였다.
오피니언마이닝 기법은 대량의 고개리뷰들에 나타나는 핵심개체 또는 속성들에 대하여 고객들이 느끼는 긍정 또는 부정의 정도를 계산할 수 있지만, 그 분석능력이 단순하다는 한계가 있다. 본 논문에서는 온라인 고객리뷰들에 대하여 다차원적으로 분석할 수 있는 기법을 제안하였다. 기존의 OLAP기법을 텍스트 데이터형에 적용할 수 있도록 수정하였다. 다차원 분석모델은 명사축과 형용사축, 문서축으로 구성되는 3차원 공간 개념을 4개의 관계형 테이블로 실체화 한 것이다. 다차원 분석모델은 기존의 오피니언마이닝, 정보요약, 클러스터링 알고리즘들을 융합할 수 있는 새로운 틀이라는 점에서 그 가치가 있다. 본 논문에서 제안한 다차원 분석모델과 알고리즘들을 실제로 구현하여 온라인 고객리뷰에 대한 복잡한 분석을 수행할 수 있음을 확인하였다.
정치적 사안에 대한 대중의 의견과 인식을 객관적으로 이해하기 위한 방법으로 텍스트 마이닝을 통한 빅데이터 분석을 수행할 수 있다. 기존 어휘 사전에 기반한 텍스트 마이닝 알고리즘은 신조어와 같이 사전에 수록되지 않은 어휘를 분석하는데 한계가 나타난다. SNS를 통해 나타나는 사용자들의 의견은 많은 경우 신조어와 비속어를 포함하는데, 이러한 어휘들을 효과적으로 분석하지 못한다면 정확한 대중의 인식과 의견을 파악하기 어렵게 된다. 본 논문은 정치 섹션의 뉴스 댓글로부터 정치적 의미성을 지니는 신조어와 비속어를 효과적으로 추출하는 방법을 제안하고, 추출한 신조어휘들의 의미와 맥락을 이해하기 위한 다양한 방법을 제시하였음.
최근 빅데이터를 통해 여러 가지 분석을 진행하고 있다. 다만 이러한 방식으로는 키워드에 대해 여론에 대한 분석을 거치지 않아 정확한 분석이 힘들다는 문제점을 가지고 있다. 따라서 본 논문에서는 이러한 문제점의 개선을 위해 데이터를 수집하고 이에 대해 감정분석을 수행하는 컨테이너 기반의 시스템을 제안한다. 감정분석 시스템을 적용한다면 키워드에 대해 분석 시에 정확도가 더욱 높아질 것으로 전망된다.
최근에 인터넷 사용이 점차 활발해 짐에 따라, 다른 사람들이 인터넷 상에 올려놓은 의견정보를 참조하고자 하는 수요가 높아지고 있다. 하지만, 이러한인터넷상에존재하는의견들은개개의웹사이트들에만존재하여, 이러한 의견정보들을 사용하고자 할 경우에는 사용자가 일일이 이러한 개개의 모든 웹사이트를 수동으로 찾아보아야 하는 번거로움이 존재하는 문제점이 있다. 본 논문은 웹 콘텐츠에서의 통계기반 웹 마이닝(Web Mining)을 통한 의견 추출 및 분석 시스템에 관한 것으로, 인터넷 상에 존재하는 여러 웹사이트들에 흩어져 있는 웹문서에서 사용자 의견정보들을 자동으로 추출 및 분석한다. 또한, 긍정/부정 의견별로 실시간으로 검색 및 통계를 확인할 수 있는 의견정보 검색 서비스를 간편하게 제공할수 있으며, 의견정보 검색 사용자들은 특정 키워드에 대하여 다른 사용자들의 의견정보를 손쉽게 실시간으로 검색 및 모니터링(Monitoring)할 수 있는 시스템이다. 제안한 기법들은 기존의 다른 기법들과의 비교 실험을 수행하여 실제 성능이 우수함을 증명하였다. 성능 평가는 긍정/부정 의견정보를 추출하는 기능의 성능 평가를 실시하였다. 그 적용 사례로 대표적인 영화 리뷰 문장 실험 데이터를 대상으로 실험하고 그 결과를 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.