• 제목/요약/키워드: opinion mining

검색결과 272건 처리시간 0.025초

FEROM: Feature Extraction and Refinement for Opinion Mining

  • Jeong, Ha-Na;Shin, Dong-Wook;Choi, Joong-Min
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.720-730
    • /
    • 2011
  • Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.

오피니언 분류의 감성사전 활용효과에 대한 연구 (A Study on the Effect of Using Sentiment Lexicon in Opinion Classification)

  • 김승우;김남규
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.133-148
    • /
    • 2014
  • 최근 다양한 정보채널들의 등장으로 인해 빅데이터에 대한 관심이 높아지고 있다. 이와 같은 현상의 가장 큰 원인은, 스마트기기의 사용이 활성화 됨에 따라 사용자가 생성하는 텍스트, 사진, 동영상과 같은 비정형 데이터의 양이 크게 증가하고 있는 것에서 찾을 수 있다. 특히 비정형 데이터 중에서도 텍스트 데이터의 경우, 사용자들의 의견 및 다양한 정보를 명확하게 표현하고 있다는 특징이 있다. 따라서 이러한 텍스트에 대한 분석을 통해 새로운 가치를 창출하고자 하는 시도가 활발히 이루어지고 있다. 텍스트 분석을 위해 필요한 기술은 대표적으로 텍스트 마이닝과 오피니언 마이닝이 있다. 텍스트 마이닝과 오피니언 마이닝은 모두 텍스트 데이터를 입력 데이터로 사용할 뿐 아니라 파싱, 필터링 등 자연어 처리기술을 사용한다는 측면에서 많은 공통점을 갖고 있다. 특히 문서의 분류 및 예측에 있어서 목적 변수가 긍정 또는 부정의 감성을 나타내는 경우에는, 전통적 텍스트 마이닝, 또는 감성사전 기반의 오피니언 마이닝의 두 가지 방법론에 의해 오피니언 분류를 수행할 수 있다. 따라서 텍스트 마이닝과 오피니언 마이닝의 특징을 구분하는 가장 명확한 기준은 입력 데이터의 형태, 분석의 목적, 분석의 결과물이 아닌 감성사전의 사용 여부라고 할 수 있다. 따라서 본 연구에서는 오피니언 분류라는 동일한 목적에 대해 텍스트 마이닝과 오피니언 마이닝을 각각 사용하여 예측 모델을 수립하는 과정을 비교하고, 결과로 도출된 모델의 예측 정확도를 비교하였다. 오피니언 분류 실험을 위해 영화 리뷰 2,000건에 대한 실험을 수행하였으며, 실험 결과 오피니언 마이닝을 통해 수립된 모델이 텍스트 마이닝 모델에 비해 전체 구간의 예측 정확도 평균이 높게 나타나고, 예측의 확실성이 강한 문서일수록 예측 정확성이 높게 나타나는 일관적인 성향을 나타내는 등 더욱 바람직한 특성을 보였다.

연관성 모델에 기반한 오피년마이닝 시스템의 설계 및 구현 (Design and Implementation of Opinion Mining System based on Association Model)

  • 김근형
    • 한국정보통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.133-140
    • /
    • 2011
  • 특정 제품이나 서비스에 대한 네티즌의 의견들은 고객들의 구매 행위에서의 참고대상일 뿐만 아니라 기업 입장에서도 마케팅이나 경영전략을 수립하기 위한 중요한 자료가 될 수 있기 때문에 온라인 고객리뷰를 분석하는 것은 매우 중요하다. 본 논문에서는 비정형(unformatted) 데이터형인 자연어(natural language) 형태로 웹상에 게시된 고객 의견들을 분석할 수 있는 새로운 오피년마이닝 기법을 제안한다. 기존 데이터마이닝 기법 중의 하나인 연관규칙탐사 기법을 수정하여 오피년마이닝 과정에 보다 효율적이고 효과적으로 적용하기 위한 방안을 고찰하고 이를 기반으로 실제 시스템을 설계하고 구현하였다.

오피니언 마이닝 기반 SNS 감성 정보 분석 전략 설계 (A Design of SNS Emotional Information Analysis Strategy based on Opinion Mining)

  • 정은희;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.544-550
    • /
    • 2015
  • 현재, SNS으로 소통되는 의견들이 증가하고 있기 때문에 SNS 메시지로부터 의미 있는 정보를 유추해내는 오피니언 마이닝(Opinion mining) 기술이 중요해지고 있다. 본 논문은 반의어와 부사의 위치에 따라 가중치를 다르게 설정하여 SNS의 감성 정보를 정확하게 추출하는 오피니언 마이닝 기반 SNS 감성 정보 분석 전략(SEIAS, SNS Emotional Information Analysis Strategy)을 제안한다. 제안하는 SEIAS(SNS Emotional Information Analysis Strategy)는 첫째, 오피니언 마이닝 분석에 필요한 감성사전을 구축하고, 둘째, SNS 데이터를 실시간으로 수집하고, 수집된 SNS 데이터와 감성사전를 비교하여 SNS 데이터의 의견값을 산출한다. 특히, 데이터의 의견값을 산출할 때, 반의어, 부사의 위치에 따라 가중값을 다르게 설정함으로써 기존의 SO-PMI와 비교하였을 때 오피니언 분석결과의 정확도를 향상시켰다.

Exploring an Optimal Feature Selection Method for Effective Opinion Mining Tasks

  • Eo, Kyun Sun;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.171-177
    • /
    • 2019
  • This paper aims to find the most effective feature selection method for the sake of opinion mining tasks. Basically, opinion mining tasks belong to sentiment analysis, which is to categorize opinions of the online texts into positive and negative from a text mining point of view. By using the five product groups dataset such as apparel, books, DVDs, electronics, and kitchen, TF-IDF and Bag-of-Words(BOW) fare calculated to form the product review feature sets. Next, we applied the feature selection methods to see which method reveals most robust results. The results show that the stacking classifier based on those features out of applying Information Gain feature selection method yields best result.

2012년, 2014년과 2016년의 어린이급식관리지원센터에 대한 빅데이터와 오피니언 마이닝을 통한 비교 (Comparison of the Center for Children's Foodservice Management in 2012, 2014, and 2016 Using Big Data and Opinion Mining)

  • 정은진;장은재
    • 대한영양사협회학술지
    • /
    • 제23권2호
    • /
    • pp.192-201
    • /
    • 2017
  • This study compared the Center for Children's Foodservice Management in 2012, 2014, and 2016 using big data and opinion mining. The data on the Center for Children's Foodservice Management were collected from the portal site, Naver, from January 1 to December 31 in 2012, 2014, & 2016 and analyzed by keyword frequency analysis, influx route analysis of data, polarity analysis via opinion mining, and positive and negative keyword analysis by polarity analysis. The results showed that nursery had the highest rank every year and education supported by Center for Children's Foodservice Management has increased significantly. The influx of data has increased through the influx route analysis of data. Blog and $caf\acute{e}e$, which have a considerable amount of information by the mother should be helpful for use as public relations and participation recruitment paths. By polarity analysis using opinion mining, the positive image of the Center for Children's Foodservice Management was increased. Therefore, the Center for Children's Foodservice Management was well-suited to the purpose and the interests of the people has been increasing steadily. In the near future, the Center for Children's Foodservice Management is expected have good recognition if various programs to participate with family are developed and advertised.

Opinion-Mining Methodology for Social Media Analytics

  • Kim, Yoosin;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.391-406
    • /
    • 2015
  • Social media have emerged as new communication channels between consumers and companies that generate a large volume of unstructured text data. This social media content, which contains consumers' opinions and interests, is recognized as valuable material from which businesses can mine useful information; consequently, many researchers have reported on opinion-mining frameworks, methods, techniques, and tools for business intelligence over various industries. These studies sometimes focused on how to use opinion mining in business fields or emphasized methods of analyzing content to achieve results that are more accurate. They also considered how to visualize the results to ensure easier understanding. However, we found that such approaches are often technically complex and insufficiently user-friendly to help with business decisions and planning. Therefore, in this study we attempt to formulate a more comprehensive and practical methodology to conduct social media opinion mining and apply our methodology to a case study of the oldest instant noodle product in Korea. We also present graphical tools and visualized outputs that include volume and sentiment graphs, time-series graphs, a topic word cloud, a heat map, and a valence tree map with a classification. Our resources are from public-domain social media content such as blogs, forum messages, and news articles that we analyze with natural language processing, statistics, and graphics packages in the freeware R project environment. We believe our methodology and visualization outputs can provide a practical and reliable guide for immediate use, not just in the food industry but other industries as well.

Opinion Mining을 이용한 신문 기사 사용자 의견 추출 (Opinion Mining from Internet Article)

  • 황치훈;류준석;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.725-726
    • /
    • 2009
  • 오늘날 인터넷의 발달 때문에 인터넷으로 쉽게 신문을 볼 수 있게 되었다. 또한, 해당 기사에 대한 의견을 사용자끼리 쉽게 교환할 수 있다. 본 논문에서는 이러한 인터넷 기사의 사용자 의견들에 Opinion Mining 기술을 활용하여 해당 기사 대상의 특징을 올바르게 파악하는 방법을 제안한다.

빅데이터 분석 기반의 오피니언 마이닝을 이용한 정보화 사업 평가 분석 (An Analysis of IT Proposal Evaluation Results using Big Data-based Opinion Mining)

  • 김홍삼;김종수
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Current evaluation practices for IT projects suffer from several problems, which include the difficulty of self-explanation for the evaluation results and the improperly scaled scoring system. This study aims to develop a methodology of opinion mining to extract key factors for the causal relationship analysis and to assess the feasibility of quantifying evaluation scores from text comments using opinion mining based on big data analysis. The research has been performed on the domain of publicly procured IT proposal evaluations, which are managed by the National Procurement Service. Around 10,000 sets of comments and evaluation scores have been gathered, most of which are in the form of digital data but some in paper documents. Thus, more refined form of text has been prepared using various tools. From them, keywords for factors and polarity indicators have been extracted, and experts on this domain have selected some of them as the key factors and indicators. Also, those keywords have been grouped into into dimensions. Causal relationship between keyword or dimension factors and evaluation scores were analyzed based on the two research models-a keyword-based model and a dimension-based model, using the correlation analysis and the regression analysis. The results show that keyword factors such as planning, strategy, technology and PM mostly affects the evaluation result and that the keywords are more appropriate forms of factors for causal relationship analysis than the dimensions. Also, it can be asserted from the analysis that evaluation scores can be composed or calculated from the unstructured text comments using opinion mining, when a comprehensive dictionary of polarity for Korean language can be provided. This study may contribute to the area of big data-based evaluation methodology and opinion mining for IT proposal evaluation, leading to a more reliable and effective IT proposal evaluation method.

오피니언 마이닝 알고리즘 기반 음성인식 인터뷰 모델의 설계 및 구현 (Design And Implementation of a Speech Recognition Interview Model based-on Opinion Mining Algorithm)

  • 김규호;김희민;이기영;임명재;김정래
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.225-230
    • /
    • 2012
  • 오피니언 마이닝은 기존의 데이터 마이닝 기술을 활용하여 웹 상에 개재된 블로그, 상품평등에 나타난 저자의 의견을 추출하는 분야로써 텍스트의 주제를 판단하는 것이 아닌 주제에 대한 저자의 태도를 판단하는 기술이다. 본 논문에서는 오피니언 마이닝 알고리즘과 공개된 음성인식 API을 사용하여 텍스트가 아닌 음성의 대한 데이터의 감정을 판단하기 위해 제안했다. 이 시스템은 공개된 Google Voice Recognition API와 주제어와 관련된 순위화 알고리즘, 개선된 극성 판단 알고리즘을 통하여 설계하고, 이를 바탕으로 음성인식 인터뷰 모델을 구현한다.