• Title/Summary/Keyword: operational transconductance amplifier

Search Result 64, Processing Time 0.022 seconds

Characteristic of Error Amplifier Using OTA (OTA를 이용한 오차 증폭기의 특성)

  • 송재훈;김희준;정원섭;임동빈
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.185-188
    • /
    • 2001
  • This paper proposes an error amplifier circuit using OTA(Operational Transconductance Amplifier) which is the main constituent element in pulse width modulation circuit. The proposed OTA error amplifier circuit is featured by simple circuit configuration, excellent high frequency characteristics and bias current controlled output. Through the experiment of pulse width modulation circuit, the validity of the operation of the OTA error amplifier circuit is verified.

  • PDF

A Design of LC-tuned Sinusoidal VCOs Using OTA-C Active Inductors

  • Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Sinusoidal voltage-controlled oscillators (VCOs) based on Colpitts and Hartley oscillators are presented. They consist of a LC parallel-tuned circuit connected in a negative-feedback loop with an OTA-R amplifier and two diode limiters, where the inductor is simulated one realized with temperature-stable linear operational transconductance amplifiers (OTAs) and a grounded capacitor. Prototype VCOs are built with discrete components. The Colpitts VCO exhibits less than 1% nonlinearity in its current-to-frequency transfer characteristic from 4.2 to 21.7 MHz and ${\pm}$95 ppm/$^{\circ}C$ temperature drift of frequency over 0 to $70^{\circ}C$. The total harmonic distortion (THD) is as low as 2.92% with a peak-to-peak amplitude of 0.7 V for a frequency-tuning range of 10.8-32 MHz. The Hartley VCO has the temperature drift and THD of two times higher than those of the Colpitts VCO.

  • PDF

Active-RC Circuit Synthesis for the Simulation of Current-Controllable Inductors and FDNRs (전류-제어 인덕터 및 FDNR 시뮬레이션을 위한 능동-RC 회로 합성)

  • Park, Ji-Mann;Shin, Hee-Jong;Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.54-62
    • /
    • 2003
  • A systematic synthesis process is described lot the simulation of current-controllable inductors using operational transconductance amplifiers (OTAs). The process is used to obtain three circuits; two are believed It) be novel. The process is also applied to design current-controllable frequency-dependent negative resistances (FDNRs). Operation principles of designed circuits are presented and experimental results are used to verify theoretical predictions. The results show close agreement between predicted behavior and experimental performance. The application of a FDNR to a current-controllable band-pass filter is also presented.

A Novel CMOS Rail-to-Rail Input Stage Circuit with Improved Transconductance (트랜스컨덕턴스 특성을 개선한 새로운 CMOS Rail-to-Rail 입력단 회로)

  • 권오준;곽계달
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.59-65
    • /
    • 1998
  • In this paper, a novel rail-to-rail input stage circuit with improved transconductance Is designed. Its excellent performances over whole common-mode input voltage Vcm range is demonstrated by circuit simulator HSPICE. The novel input stage circuit comprises additional 4 input transistors and 4 current sources/sinks. It maintains DC currents of signal amplifying transistors when one of the differential input stage circuits operates, but it reduces these currents to 1/4 when both differential input stage circuits operates, As a result, a operational amplifier with the novel circuit maintains nearly constant transconductance performance and unity-gain frequency in strong inversion region. The novel circuit allows an optimal frequency compensation and uniform operational amplifier performance over whole Vcm range.

  • PDF

Low Dropout Voltage Regulator Using 130 nm CMOS Technology

  • Marufuzzaman, Mohammad;Reaz, Mamun Bin Ibne;Rahman, Labonnah Farzana;Mustafa, Norhaida Binti;Farayez, Araf
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.257-260
    • /
    • 2017
  • In this paper, we present the design of a 4.5 V low dropout (LDO) voltage regulator implemented in the 130 nm CMOS process. The design uses a two-stage cascaded operational transconductance amplifier (OTA) as an error amplifier, with a body bias technique for reducing dropout voltages. PMOS is used as a pass transistor to ensure stable output voltages. The results show that the proposed LDO regulator has a dropout voltage of 32.06 mV when implemented in the130 nm CMOS process. The power dissipation is only 1.3593 mW and the proposed circuit operates under an input voltage of 5V with an active area of $703{\mu}m^2$, ensuring that the proposed circuit is suitable for low-power applications.

Design of Voltage Controlled Oscillator Using the BiCMOS (BiCMOS를 사용한 전압 제어 발진기의 설계)

  • Lee, Yong-Hui;Ryu, Gi-Han;Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.83-91
    • /
    • 1990
  • VOC(coltage controlled oscillator) circuits are necessary in applications such at the demodul-ation of FM signals, frequency synthesizer, and for clock recovery from digital data. In this paper, we designed the VCO circuit based on a OTA(operational transconductance amplifier) and the OP amp which using a differential amplifier by BiCMOS circuit. It consists of a OTA, voltage contorolled integrator and a schmitt trigger. Conventional VCO circuits are designed using the CMOS circuit, but in this paper we designed newly BiCMOS VCO circuit which has a good drive avlity, As a result of SPICE simulation, output frequency is 141KHz at 105KHz, and sensitivity is 15KHz.

  • PDF

OTA-based precision full-wave rectifier

  • Riewtuja, V.;Chaikla, A.;Tammarugwattana, N.;Julsereewong, P.;Surakampontorn, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.259-261
    • /
    • 1999
  • An operational transconductance amplifier (OTA) based precision full-wave rectifier circuit is presented in this article. The proposed circuit has a very sharp corner in the DC transfer characteristic and simple configuration comprised three OTAs and one current mirror. The temperature dependence of the OTA transconductance is reduced. Experimental results demonstrating the characteristic of the circuit are included.

  • PDF

A Design of Novel Instrumentation Amplifier Using a Fully-Differential Linear OTA (완전-차동 선형 OTA를 사용한 새로운 계측 증폭기 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • A novel instrumentation amplifier (IA) using fully-differential linear operational transconductance amplifier (FLOTA) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of a FLOTA, two resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into FLOTA converts into two same difference currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the FLOTA and realized the IA used commercial op-amp LF356. Simulation results show that the FLOTA has linearity error of 0.1% and offset current of 2.1uA at input dynamic range ${\pm}3.0V$. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the 60dB was 10MHz. The proposed IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 105mW at supply voltage of ${\pm}5V$.

A New CMOS Voltage-Controlled Oscillator (새로운 CMOS 전압-제어 발진기)

  • Chung, Won-Sup;Kim, Hong-Bae;Lim, In-Gi;Kwack, Kae-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1274-1281
    • /
    • 1988
  • A new voltage-controlled oscillator based on a voltage-controlled integrator has been developed. It consists of a Schmitt-trigger and a voltage-controlled integrator, which is realized by an operational transconductance amplifier (OTA) and a grounded capacitor. The input control voltage changes the time constant of the integrator, and hence the oscillation frequency. The SPICE simulation shows that a prototype circuit, which oscillates at 12.21 KHz at 0 V, has the conversion sencitivity 2,437 Hz/V and the residual nonlinearity less than 0.68% in a control voltage range from -2 V to 2 V. It also shows that the circuit provides a temperature drift less than + 250 ppm/$^{\circ}$C for frequencies up to 100 KHz.

  • PDF

Bridge Resistance Deviation-to-Period Converter for Resistive Biosensors (저항형 바이오 센서를 위한 브릿지 저항 편차-주기 변환기)

  • Chung, Won-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.40-44
    • /
    • 2014
  • A bridge resistance deviation-to-period (BRD-to-P) converter is presented for interfacing resistive biosensors. It consists of a linear operational transconductance amplifier (OTA) and a current-controlled oscillator (CCO) formed by a current-tunable Schmitt trigger and an integrator. The free running period of the converter is 1.824 ms when the bridge offset resistance is $1k{\Omega}$. The conversion sensitivity of the converter amounts to $3.814ms/{\Omega}$ over the resistance deviation range of $0-1.2{\Omega}$. The linearity error of the conversion characteristic is less than ${\pm}0.004%$.