• 제목/요약/키워드: operational stiffness

검색결과 70건 처리시간 0.025초

Semi-Singularity in Stiffness Generation of an Anthropomorphic Robot

  • Kim, Sungbok;Sungho Moon;Cho, Doo-San
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.113-116
    • /
    • 2000
  • This paper analyzes the singularity of an anthropomorphic robot associated with joint and operational stiffness generation from muscle stiffness. The singularity analysis is made simply based on the signs of the actual and the desired coupling joint stiffness. First, the relationships of the muscle stiffness and the actual joint stiffness, and the operational stiffness and the desired joint stiffness are examined. Second, according to the sign restriction on the actual coupling joint stiffness, the operational space is divided into the semi-singular(SS), the regular(R), and the semi-regular(SR) regions. Third, from the sign comparison of tile actual and the desired coupling joint stiffness, the sufficient condition for the semi-singularity in operational stiffness generation is derived. The limitation on the allowable operational stiffness when a task point belongs to SS, R, and SR regions is also discussed. Simulation results are given.

  • PDF

고강성 병렬형 로봇의 최적 여유 구동 (Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness)

  • 김성복
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

로봇 손을 이용한 조립 작업의 컴플라이언스 특성 설정에 관한 연구:2차원 모델 (A Study on Specifying Compliance Characteristics for Assembly Tasks Using Robot Hands: Two Dimensional Model)

  • 김병호;오상록;이병주;서일홍
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1171-1177
    • /
    • 2001
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands. Through various assembly tasks, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. Also, we show that some of coupling stiffness elements in the operational space cannot be planned arbitrarily. As a result it is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

로봇 손을 이용한 2차원 조립 작업의 컴플라이언스 특성 설정 기준 (A Guideline for Specifying Compliance Characteristics of Two Dimensional Assembly Tasks using Robot Hands)

  • 김병호;오상록;이병주;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.78-78
    • /
    • 2000
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands, To be specific, some of coupling stiffness elements cannot be planned arbitrary. Through T-type assembly task, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. It is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

하드 디스크 드라이브 비 동작 충격 시에 내부 파트들의 동 특성에 대한 연구 (A study on dynamic behavior of inner parts with non-operational shock in hard disk drive)

  • 최용호;최종학;임건엽;서준호;박노철
    • 정보저장시스템학회논문집
    • /
    • 제9권2호
    • /
    • pp.32-35
    • /
    • 2013
  • Nowadays, function related to anti-vibration and anti-shock of storage devices is required because of portability. Therefore, many hard disk drive (HDD) studies about external shock and vibration have been performed. Especially, many studies are performed with non-operational shock. Most studies have used the fixed condition between spindle system and base when they wanted to analyze dynamic behavior of inner parts in simulation. But spindle system has actually stiffness and damping coefficient. Maybe difference of value would be happened between fixed condition and spring condition. So, we measured FRF of spindle system to know stiffness and damping coefficient in HDD. And we studied on dynamic behavior of inner parts by using calculated stiffness and damping coefficient. As a result, we confirmed the difference as boundary condition of spindle system.

Task-Based Analysis on Number of Robotic Fingers for Compliant Manipulations

  • Kim, Byoung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.333-338
    • /
    • 2009
  • This paper presents a task-based analysis on the number of independent robotic fingers required for compliant manipulations. Based on the stiffness relation between operational space and fingertip space of a multi-fingered object manipulating system, we describe a technique for modulation of the fingertip stiffness without inter-finger coupling so as to achieve the desired stiffness specified in the operational space. Thus, we provides a guide line how many fingers are basically required for successful multi-fingered compliant tasks. Consequently, this paper enables us to assign effectively the number of fingers for various compliant manipulations by robot hands.

다지 손을 이용한 문자 쓰기 : 파지 모델링 및 컴플라이언스 특성 해석 (Character Writing Using Multi-Fingered Hands : Grasp Modeling and Compliance Analysis)

  • 김병호;여희주
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.927-932
    • /
    • 2001
  • When people write a character with a pen stably, proper compliance planning is necessary. In this paper, after investigating the property of character writing task, we propose a fundamental grasp model for character writing and also analyze compliance characteristics for effective character writing using multi-fingered hands. For this, the general stiffness relation of multi-fingered hand is firstly described. Next, we investigate the grasp configurations for grasping a pen and then, we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the given character writing task. Through the analysis, an effective grasp modeling for successful character writing is shown. And also, we conclude that the operational compliance characteristics should be properly planned for character writing, stably and precisely.

  • PDF

타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석 (Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of Tower Stiffness)

  • 추헌호;심재박;류경중;김동현;김봉영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.602-606
    • /
    • 2011
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent reduced elastic tower is supported to the VAWT so that the elastic stiffness effect of the tower can be reflected to the present vibration experiment. Various excitation sources with aerodynamic forces are considered and the dominant operating vibration phenomena are physically investigated in detail.

  • PDF

35 kWh급 초전도 플라이휠 에너지 저장 시스템 프레임 설계 및 제작 (Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System Main Frame)

  • 정세용;한영희;박병준;한상철
    • Progress in Superconductivity
    • /
    • 제13권1호
    • /
    • pp.52-57
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. The 35 kWh class SFES is composed of a main frame, superconductor bearings, electro-magnetic dampers, a motor/generator, and a composite flywheel. The energy storing capacity of the SFES can be limited by the operational speed range of the system. The operational speed range is limited by many factors, especially the resonant frequency of the main frame and flywheel. In this study, a steel frame has been designed and constructed for a 35 kWh class SFES. All the main parts, their housings, and the flywheel are aligned and assembled on to the main frame. While in operation, the flywheel excites the main frame, as well as all the parts assembled to it, causing the system to vibrate at the rotating speed. If the main frame is excited at its resonant frequency, the system will resonate, which may lead to unstable levitation at the superconductor bearings and electro-magnetic dampers. The main frame for the 35 kWh class SFES has been designed and constructed to improve stiffness for the stable operation of the system within the operational speed range.