• Title/Summary/Keyword: operational ground

Search Result 293, Processing Time 0.025 seconds

Relative Road Damage Analysis with Driving Modes of a Military Vehicle (군용차량의 주행모드에 따른 상대 노면 가혹도 분석)

  • Suh, Kwonhee;Song, Bugeun;Yoon, Hiseak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.225-231
    • /
    • 2016
  • A military vehicle is driven at different usage modes with the army application and servicing conditions. For practical durability validation, DT(Development Test) on a new military vehicle should be run up to the durability target kilometers on test courses in the specified proving ground. Driving velocities with test courses at the endurance mode of DT are established definitely. However, OT(Operational Test) and initial endurance test of production car can't be performed only in the DT courses due to the development period limit. Therefore, this paper focuses on the method to analyze the relative road damages between the endurance test in DT and other endurance test. Road load acquisition tests on KLTV(Korean Light Tactical Vehicle) were implemented at 15 driving modes in off-road and cross-country courses of two tests. Wheel accelerations were processed through band-pass filter, and then the main frequency and maximum power of the signals were computed by PSD analysis. Finally, using the proving ground optimization based on RDS(Relative Damage Spectrum) characterization, the damage factors between off-roads of test courses were determined.

An Improved Synchronization Control Scheme of a Low Cost 400Hz Power Supply for No-Break Power Transfer (저가격 고 신뢰성의 400Hz 전원의 무순단 전력절환용 개선된 동기화 기법)

  • Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.470-474
    • /
    • 2014
  • This study proposes an improved synchronization control scheme for a low-cost 400Hz power supply for a no-break power transfer system. In the case of aircraft applications, the 400Hz power supply called ground power units is accepted and used as the external electrical power system during stopovers on ground. A momentary break in the supply occurs when shifting from one power source to another. To allow shifting without a break in the supply, the two power sources are momentarily connected in parallel. The proposed synchronization control is achieved by connecting an existing synchronization bus to the voltage zero-crossing signal of a generator power with discrete logic ICs and analog circuits. Therefore, unlike expensive controllers, such as DSP and CAN, the proposed control scheme is rather simple and may decrease operational cost. The practical feasibility of the proposed control scheme is proven by experimental results.

A development of GEO satellite ground control softwares

  • Lee, H.J.;Kim, J.M.;Chung, S.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.38-43
    • /
    • 1994
  • To provide more instructive and a safer ground control operation environments for satellite operators, and subsequently to implement a better look-and-feel user interface and a structural mechanism to enhance the efficiency of control and monitoring facilities, we have developed a prototype(laboratory model) ground control softwares targeting for the first generation KOREASAT scheduled to be launched in 1995. As far as the functionality is concerned, the developed system is covering almost all the mission phase operational functions except for some functions like antenna tracking control that are necessary for real operation environments. Most of the functions of the system is realized in softwares but some hardwares needed for TM/TC RF communications are also included in it. The system is now being integrated and under the system test. The performance and functionality is to be evaluated by the end of this year by using the satellite software simulator. Next year, this system could be configured to be used as a workbench for a online/off-line analysis of the operating KOREASAT satellites.

  • PDF

Interrelation Analysis of UGV Operational Capability and Combat Effectiveness using AnyLogic Simulation (애니로직 시뮬레이션을 이용한 무인지상차량 운용성능과 전투효과의 연관성 분석)

  • Lee, Jaeyeong;Shin, Sunwoo;Kim, Junsoo;Bae, Sungmin;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In modern warfare, the number of unmanned systems grow faster than any other weapon systems. Therefore, it is very important to predict and measure the combat effectiveness (CE) of unmanned weapon systems in battlefield for deciding defense budget to acquire those systems. In general, quantitative calculation of weapon effectiveness under complicated battlefield is difficult based on the future network centric warfare. Hence, many papers studied how to measure the combat effectiveness and tried to study a lot of related issues about it. However, there are few papers dealing with the relationship between the UGV (Unmanned Ground Vehicle)'s performance and CE in a ground battlefield. In this paper, we do the sensitivity analysis based on a given scenario in a small unit battle. In order to do that, we developed simulation model using AnyLogic and changed the input parameters such as detection and hitting probabilities. We also assess the simulation outputs according to the variation of input parameters. The MOE used in this simulation model output is survival ratio for Blue force. We hope that this paper will be useful to find which input variable is more effective to increase combat effectiveness in a small unit ground battlefield.

Posture Stabilization Algorithm of A Small Unmanned Ground Vehicle for Turnover Prevention (전복 방지를 위한 소형 무인주행로봇의 자세 안정화 알고리즘)

  • Koh, Doo-Yeol;Kim, Young-Kook;Lee, Sang-Hoon;Jee, Tae-Young;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.965-973
    • /
    • 2011
  • Small unmanned ground vehicles(SUGVs) are typically operational on unstructured environments such as crashed building, mountain area, caves, and so on. On those terrains, driving control can suffer from the unexpected ground disturbances which occasionally lead turnover situation. In this paper, we have proposed an algorithm which sustains driving stability of a SUGV as preventing from turnover. The algorithm exploits potential field method in order to determine the stability of the robot. Then, the flipper and manipulator posture of the SUGV is optimized from local optimization algorithm known as gradient descent method. The proposed algorithm is verified using 3D dynamic simulation, and results showed that the proposed algorithm contributes to driving stability of SUGV.

An overview of several techniques employed to overcome squeezing in mechanized tunnels; A case study

  • Eftekhari, Abbas;Aalianvari, Ali
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-224
    • /
    • 2019
  • Excavation of long tunnels by shielded TBMs is a safe, fast, and efficient method of tunneling that mitigates many risks related to ground conditions. However, long-distance tunneling in great depth through adverse geological conditions brings about limitations in the application of TBMs. Among various harsh geological conditions, squeezing ground as a consequence of tunnel wall and face convergence could lead to cluttered blocking, shield jamming and in some cases failure in the support system. These issues or a combination of them could seriously hinder the performance of TBMs. The technique of excavation has a strong influence on the tunnel response when it is excavated under squeezing conditions. The Golab water conveyance tunnel was excavated by a double-shield TBM. This tunnel passes mainly through metamorphic weak rocks with up to 650 m overburden. These metamorphic rocks (Shales, Slates, Phyllites and Schists) together with some fault zones are incapable of sustaining high tangential stresses. Prediction of the convergence, estimation of the creeping effects and presenting strategies to overcome the squeezing ground are regarded as challenging tasks for the tunneling engineer. In this paper, the squeezing potential of the rock mass is investigated in specific regions by dint of numerical and analytical methods. Subsequently, several operational solutions which were conducted to counteract the challenges are explained in detail.

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.

Implementation and Verification of Lateral Navigation Algorithm for Korean Utility Helicopter (기동헬기 측면항법 알고리즘 구현 및 검증)

  • Kim, Sung-woo;Go, Eun-kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.354-361
    • /
    • 2018
  • This paper describe the Lateral Navigation algorithm design and verification that implementation on Mission Computer's OFP for Korean Utility Helicopter(KUH) instead of Auto Flight Control System(AFCS) Vehicle Management System. The LNAV function transmits Roll command into the AFCS System. The Roll command value will be calculated by control algorithms in MC. The Operational Flight Program(OFP) shall use for its calculations different measurements of the aircraft's attitude and place. Using these inputs, the OFP will translate a navigational demand(for example-to perform the selected flight plan) into Roll commands to the autopilot. By conducting integration test using SIL and ground test, flight test, it is confirmed that the introduced algorithm meets the requirements of the Mission Equipment Package(MEP) system. LNAV function is verified through the System Integration Laboratory(SIL) test, ground and flight test.

KOMPSAT-2 COMMERCIAL USER SUPPORT TEAM (KOCUST) - ORGANIZATION AND ITS OPERATIONAL CONCEPTS -

  • Kim, Youn-Soo;Jeun, Gab-Ho;Jeun, Jung-Nam;Blet, Didier
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.808-811
    • /
    • 2006
  • The KOMPSAT-2 was developed by KARI and it was successfully launched from Plesetsk, Russia on 28th July 2006. The Korean government decided the commercialization of the KOMPSAT-2 image data and direct reception services worldwide. SPOT Image, based in Toulouse (France) was selected by KARI through an international open bidding as a foreign company for the KOMPSAT-2 image promotion over the entire world except the territory of Republic of Korea including the North Korea, the United States of America, UAE, Saudi Arabia, Kuwait, Qatar, Oman, Yemen, Egypt, Iran, Iraq, Jordan, Lebanon, and Syria. KAI (Korea Aerospace Industry Ltd.) is an engaged Korean company for this area. KARI has responsibility to operate the satellite, data acquisition, archiving for the worldwide commercialization. For the processing and delivery of the KOMPSAT-2 image data to the users of KAI and SPOT Image, KAI has the binding contract with KARI. So KAI has the responsibility for the commercial ground station operation such as user support, data processing, and the data delivery. The KOMPSAT-2 ground station is hosted in KARI, so KARI has developed the concept of KOCUST (KOMPSAT-2 Commercial User Support Team) jointly with KAI to support the data processing and delivery as KOMPSAT-2 developer and satellite operator. The main purpose of the KOCUST is to support the operational activities to provide the data and service quality to satisfy customers. KOCUST will be organized by the members of KARI and KAI together. KARI members will mainly take the role of KOCUST coordination, data processing and user support in a public sector. KAI members are going to take user desk, data validation and delivery et cetera, which are related with users. This paper describes a summarized concepts of KOCUST like organization, dedicated tasks of each part and work flow of daily operation.

  • PDF

Analysis on the Interference from Satellites to HAPS ground station for Sharing between HAPS and FSS (HAPS와 FSS간의 주파수 공유를 위한 위성과 HAPS 지상국간의 간섭 분석)

  • 최문환;강영흥
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.610-614
    • /
    • 2003
  • The bands 27.5 - 28.35GHz and 31.0 - 31.3GHz were allocated to the High Altitude Platform Station in WRC-2000. However, since these bands were already allocated to the existing fired-satellite service, the analysis on the interference effects between the existing FSS/GSO system and FS/HAPS system should be needed. To do study on the interference effects between above two systems, we can consider two frequency operational renditions, one is the Reverse mode and the other Forward mode. In this paper, we considered the Forward mode as the frequency operational condition and analyzed the interference effect from a number of GSO satellites to HAPS ground station due to the I/N values, the latitude of HAPS and the satellite separation. In future, these results will be vital data to share between HAPS and GSO systems.

  • PDF