• Title/Summary/Keyword: operational frequencies

Search Result 138, Processing Time 0.023 seconds

Implementation of Noise Reduction Methodology to Modal Distribution Method

  • Choi, Myoung-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • Vibration-based Structural Health Monitoring (SHM) systems use field measurements of operational signals, which are distorted by noise from many sources. Reducing this noise allows a more accurate assessment of the original "clean" signal and improves analysis results. The implementation of a noise reduction methodology for the Modal Distribution Method (MDM) is reported here. The spectral subtraction method is a popular broadband noise reduction technique used in speech signal processing. Its basic principle is to subtract the magnitude of the noise from the total noisy signal in the frequency domain. The underlying assumption of the method is that noise is additive and uncorrelated with the signal. In speech signal processing, noise can be measured when there is no signal. In the MDM, however, the magnitude of the noise profile can be estimated only from the magnitude of the Power Spectral Density (PSD) at higher frequencies than the frequency range of the true signal associated with structural vibrations under the additional assumption of white noise. The implementation of the spectral subtraction method to MDM may decrease the energy of the individual mode. In this work, a modification of the spectral subtraction method is introduced that enables the conservation of the energies of individual modes. The main difference is that any (negative) bars with a height below zero after subtraction are set to the absolute value of their height. Both noise reduction methods are implemented in the MDM, and an application example is presented that demonstrates its effectiveness when used with a signal corrupted by noise.

Sensitivity of Input Parameters in the Spectral Wave Model

  • Park, Hyo-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2009
  • Many researches have been done to define the physical parameters for the wave generation and transformation over a coastal region. However, most of these have been limited to the application of particular conditions, as they are generally too empirical. To yield more reasonable wave estimation using a spectral wave model, it is important to understand how they work for the wave estimation. This study involved a comprehensive sensitivity test against the spectral resolution and the physical source/sink terms of the spectral wave model using SWAN and TOMAWAC, which have the same physical background with several different empirical/theoretical formulations. The tests were conducted for the East Anglian coast, UK, which is characterized by a complex bathymetry due to several shoals and offshore sandbanks. For the quantitative and qualitative evaluation of the models' performance with different input conditions, the wave elements and spectrums predicted at representative sites the East Anglia coast were compared/analyzed. The spectral resolution had no significant effect on the model results, but the lowest resolution on the frequency and direction induced underestimations of the wave height and period. The bottom friction and depth-induced breaking terms produced relatively high variations in the wave prediction, depending on which formulation was applied. The terms for the quadruplet and whitecapping had little effect on the wave estimation, whereas the triads tended to predict shorter and higher waves by energy transferring to higher frequencies.

Vibration-based structural health monitoring of stay cables by microwave remote sensing

  • Gentile, Carmelo;Cabboi, Alessandro
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • Microwave remote sensing is probably the most recent experimental technique suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are presented and discussed. Subsequently, the paper addresses the application of the radar technology to the measurement of the vibration response on the stay cables of two cable-stayed bridges. The dynamic tests were performed in operational conditions (i.e. with the excitation being mainly provided by micro-tremors, wind and traffic) and the maximum deflections of the cables were generally lower than 5.0 mm. The investigation clearly highlights: (a) the safe and simple use of the radar on site and its effectiveness to simultaneously measure the dynamic response of all the stay cables of an array; (b) the negligible effects of the typical issues and uncertainties that might affect the radar measurements; (c) the accuracy of the results provided by the microwave remote sensing in terms of natural frequencies and tension forces of the stay cables; (d) the suitability of microwave interferometry to the repeated application within Structural Health Monitoring programmes.

Modal parameters identification of heavy-haul railway RC bridges - experience acquired

  • Sampaio, Regina;Chan, Tommy H.T.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Caraj$\acute{a}$s railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.

Modal parameter identification of in-filled RC frames with low strength concrete using ambient vibration

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.137-149
    • /
    • 2014
  • In this study, modal parameters such as natural frequencies, mode shapes and damping ratios of RC frames with low strength are determined for different construction stages using ambient vibration test. For this purpose full scaled, one bay and one story RC frames are produced and tested for plane, brick in-filled and brick in-filled with plaster conditions. Measurement time, frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques are used together. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames. The results indicate that modal parameters change significantly depending on the construction stages. In addition, Infill walls increase stiffness and change the mode shapes of the RC frame. There is a good agreement between mode shapes obtained from brick in-filled and in-filled with plaster conditions. However, some differences are seen in plane frame, like expected. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimize by finite element model updating using some uncertain parameters such as material properties, boundary condition and section properties to reflect the current behavior of the RC frames.

A Study on the CDMA-based TT&C Design and Experiment Concept

  • Lee, Ho-Jin;Mo, Hee-Sook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.37-40
    • /
    • 1999
  • ETRI has successfully completed and delivered to KARI the KOMPSAT Mission Control System. This system was designed to work in the conventional TT&C modulation scheme with the pre-assigned frequencies. As a way to accelerate in catching up with future TT&C technology evolutions, a preliminary study needs to be carried out to prepare for the development of a spread spectrum applicable to TT&C. A brief study was carried out to review some points to be considered in designing and implementing spread spectrum schemes to the ground TT&C system intended for a LEO spacecraft. Also a simulation and link design revisit was performed to see the operational and technical benefits with the KOMPSAT TT&C parameters. An experiment concept is proposed to test as many functions at a time once the prototype is developed. In this configuration, a ground-model TT&C transponder is connected via LAN to the ETRI-developed KOMPSAT S/W simulator and linked to the KOMPSAT TM/TC processing s/w via spread spectrum signals through a GEO satellite bent-pipe link. A satellite data relay link simulation could be carried out in this configuration.

  • PDF

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.

Electrostatic 2-axis MEMS Stage with a Large Area Platform for Probe-based Storage Devices (대면적 플랫폼을 갖는 Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.179-189
    • /
    • 2006
  • Recently the electrostatic 2-axis MEMS stages have been fabricated f3r the purpose of an application to PSD (Probe-based Storage Device). However, all of the components (platform, comb electrodes, springs, anchors, etc.) in those stages are placed in-plane so that they have low areal efficiencies such as a few percentage, which is undesirable as data storage devices. In this paper, we present a novel structure of an electrostatic 2-axis MEMS stage that is characterized by having a large areal efficiency of about 25%. For obtaining large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. The structure and operational principle of the MEMS stage are described, followed by a design and analysis, the fabrication and measurement results. Experimental results show that the driving ranges of the fabricated stage along the x and y axis were 27$\mu$m, 38$\mu$m at the supplied voltages of 65V, 70V, respectively and the natural frequencies along x and y axis were 180Hz, 310Hz, respectively. The total size of the stage is about 5.9$\times$6.8mm$^2$ and the platform size is about 2.7$\times$3.6mm$^2$.

The Application of Frequency Modulated Quartz Oscillator Using a V.V.C. Diode. (VVC 다이오드를 사용한 수정주파수 변조기의 응용)

  • Jeong, Man-Yeong;Kim, Yeong-Ung;Kim, Byeong-Sik
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.5
    • /
    • pp.19-26
    • /
    • 1972
  • A newly developed quartz frequency modulator utili3ing a V. V. C. diode is briefly described. Its electrical characteristics-including modulation linearity, modulation distortion, and carrier frequency stability depending upon the variation of the environmental temperature and the applied power voltage, etc.-are suitable for the modulator of a mobile or a portable F.M. transmitter according to the experimental results. The excellent over-all electrical characteristics were proved from the experimental development of the two kinds of transceivers. One is the single channal transceiver which contains a direct frequency modulator at the carrier frequency of 52.750 MHg. The other is the dual channel transceiver (the frequencies are selected from about 40 channels without tuning adjustment) whose operational frequency is composed of a modulated frequency of 10.7 MHz and the frequency generated at a channel control oscillator, As mentioned above, it is realized that the electrical characteristics of this modulation method are suitable for portable F. M. transceivers.

  • PDF

Design And Implementation of a Novel Sustain Driver for Plasma Display Panel

  • Agarwal Pankaj;Kim Woo-Sup;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.403-405
    • /
    • 2006
  • Over the years, plasma display panel (PDP) manufacturers have impressed the flat panel display industry with yet another new product essentially having the merits of a larger screen size. Since larger size implies higher power ratings, voltage/current ratings of the power devices used have become a rising concern. Another important concern is the brightness of PDP, one way of increasing which is by operating the PDP at higher frequencies. In order to address the above issues, a transformer coupled sustain-driver for AC-PDP is proposed During the transition time, the two windings of the transformer greatly boost up the displacement current flowing through the panel capacitance and hence enable a fast inversion of the voltage polarity with practical values of resonant inductance. In the proposed topology, the resonant inductance can be increased by a factor of $(n+1)^2$ as compared to prior approaches. Increased inductance results in lower current stresses. Moreover, high frequency operation is possible by using higher value of n (turn ratio of the transformer). The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The validity of the proposed sustain driver is established through simulation and experimental results using a 42-in PDP

  • PDF