• Title/Summary/Keyword: operational environmental characteristics

Search Result 182, Processing Time 0.029 seconds

A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process (연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구)

  • Hwang Joon;Hwang Duk-Chul;Woo Chang-Ki;Chung Eui-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-6
    • /
    • 2005
  • Machining is a one of the broadly used manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Experimental results show that the generated fine aerosol which particle size less than 10micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This quantitative analysis can be provided the basic knowledge f3r further research for environmentally conscious machining technology developments.

Operational characteristics and application of reactor using entrapped microorganism in the sewage treatment (고정화 미생물 반응조의 운전특성 및 생활하수처리 적용)

  • Cha Su Gil;Lee Byung Hun;Jeong Seung Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.79-84
    • /
    • 2002
  • Entrapped media with cellulous triacetate in which activated sludge was applied to induce operating factors and sewage treatment on site. The results are summarized as follows; The treatment efficiency of entrapped media is 92%, 90% and 80% at the size of 5mm, 7mm, and 12mm, respectively. Also, treatment efficient rate was increased by the packed amount of media in less than 30 % packed, while in more than 40 % packed that was decreased. It takes 10 day to reach the steady states and it is less than the existing activated sludge method. The slopes of oxygen consumption rate are almost parallel both in the entrapped media and free sludge. When organic loading rate is less than 1.0 kg/m$^3$ㆍd on site, it is achieved good removal rate independent of changes of loading rate.

A Study on the Analysis of Cutting Fluid Aerosol in Grinding Process (연삭가공에서 절삭유 에어로졸 측정평가에 관한 연구)

  • Hwang Joon;Hwang Duk-Chul;Woo Chang-Ki;Chung Eui-Sik
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.282-287
    • /
    • 2005
  • This paper presents the experimental results to analyze the characteristics of cutting fluid aerosol generation in grinding process. Machining is a one of the broad manufacturing process to produce the parts, products and various molds and dies. The environmental impact due to aerosol generation via atomization process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near worker's breath zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This qualitative analysis can be provided the basic knowledge for further research for environmentally conscious machining technology developments.

  • PDF

Development and Application of SITES (부지환경종합관리시스템 개발과 적용)

  • Park, Joo-Wan;Yoon, Jeong-Hyoun;Kim, Chank-Lak;Cho, Sung-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.205-215
    • /
    • 2008
  • SITES(Site Information and Total Environmental Data Management System) has been developed for the purpose of systematically managing site characteristics and environmental data produced during the pre-operational, operational, and post-closure phases of a radioactive waste disposal facility. SITES is an integration system, which consists of 4 modules, to be available for maintenance of site characteristics data, for safety assessment, and for site/environment monitoring; site environmental data management module(SECURE), integrated safety assessment module(SAINT), site/environment monitoring module(SUDAL) and geological information module for geological data management(SITES-GIS). Each module has its database with the functions of browsing, storing, and reporting data and information. Data from SECURE and SUDAL are interconnected to be utilized as inputs to SAINT. SAINT has the functions that multi-user can access simultaneously via client-server system, and the safety assessment results can be managed with its embedded Quality Assurance feature. Comparison between assessment results and environmental monitoring data can be made and visualized in SUDAL and SITES-GIS. Also, SUDAL is designed that the periodic monitoring data and information could be opened to the public via internet homepage. SITES has applied to the Wolsong low- and intermediate-level radioactive waste disposal center in Korea, and is expected to enhance the function of site/environment monitoring in other nuclear-related facilities and also in industrial facilities handling hazardous materials.

  • PDF

Degradation Characteristics of Aqueous AMP Solution Containing Additives in Separation of $CO_2/H_2S$ ($CO_2/H_2S$의 분리시 첨가제에 따른 AMP 수용액의 열화특성)

  • Choi, Won-Joon;Lee, Jae-Jeong;Cho, Ki-Chul;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.280-285
    • /
    • 2005
  • The method of chemical absorption has been presented to separate and recover acid gases like $CO_2\;and\;H_2S$. But, this method has some problems such as loss of valuable amine and operational problems (forming, corrosion and fouling) by degradation. In this study, we investigated the degradation characteristics of aqueous AMP solution containing additives such as HMDA, MDEA and piperazine. The degradation was affected by temperature and process time. AMP solution absorbing $CO_2\;and\;H_2S$ was degraded 105% and 23% more than pure AMP at $120^{\circ}C$ respectively. In addition, all the additives were degraded significantly as the temperature increased. The order of the degraded amount of additives mixed in the AMP solution containing absorbed $CO_2$ was as followings : HMDA > piperazine > MDEA.

Observed Characteristics of Precipitation Timing during the Severe Hazes: Implication to Aerosol-Precipitation Interactions (연무 종류별 강수 발생시간 관측 특성 및 에어로졸-강수 연관성 분석)

  • Eun, Seung-Hee;Zhang, Wenting;Park, Sung-Min;Kim, Byung-Gon;Park, Jin-Soo;Kim, Jeong-Soo;Park, Il-Soo
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • Characteristics of precipitation response to enhanced aerosols have been investigated during the severe haze events observed in Korea for 2011 to 2016. All 6-years haze events are classified into long-range transported haze (LH: 31%), urban haze (UH: 28%), and yellow sand (YS: 18%) in order. Long-range transported one is mainly discussed in this study. Interestingly, both LH (68%) and YS (87%) appear to be more frequently accompanied with precipitation than UH (48%). We also found out the different timing of precipitation for LH and YS, respectively. The variations of precipitation frequency for the LH event tend to coincide with aerosol variations specifically in terms of temporal covariation, which is in contrast with YS. Increased aerosol loadings following precipitation for the YS event seems to be primarily controlled by large scale synoptic forcing. Meanwhile, aerosols for the LH event may be closely associated with precipitation longevity through changes in cloud microphysics such that enhanced aerosols can increase smaller cloud droplets and further extend light precipitation at weaker rate. Notably, precipitation persisted longer than operational weather forecast not considering detailed aerosol-cloud interactions, but the timescale was limited within a day. This result demonstrates active interactions between aerosols and meteorology such as probable modifications of cloud microphysics and precipitation, synoptic-induced dust transport, and precipitation-scavenging in Korea. Understanding of aerosol potential effect on precipitation will contribute to improving the performance of numerical weather model especially in terms of precipitation timing and location.

Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review

  • Yaqub, Muhammad;Lee, Seung Hwan
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Micellar-enhanced ultrafiltration (MEUF) is a surfactant-based separation technique and has been investigated for the removal of heavy metals from wastewater. The performance of heavy metals removal from wastewater through MEUF relies on membrane characteristics, surfactant properties, various operational parameters including operating pressure, surfactant and heavy metal concentration, pH of the solution, temperature, and presence of dissolved solutes and salts. This study presents an overview of literature related to MEUF with respect to the all significant parameters including membranes, surfactants, operating conditions and MEUF hybrid processes. Moreover, this study illustrates that MEUF is an adaptable technique in various applications. Nowadays water contamination caused by heavy metals has become a serious concern around the globe. MEUF is a significant separation technique in wastewater treatment that should be acknowledged, for the reason that removal of heavy metals contamination even at lower concentrations becomes achievable, which is evidently made known in the presented review. Hybrid processes presented the better results as compared to MEUF. Future studies are required to continue the experimental work with various combinations of surfactant and heavy metals, and to investigate for the treatment of concentrated solutions, as well as for real industrial wastewater.

Results Of Mathematical Modeling Of Organizational And Technological Solutions Of Effective Use Of Available Resource Of Modern Roofs

  • Arutiunian, Iryna;Mishuk, Katerina;Dankevych, Natalia;Yukhymenko, Artem;Anin, Victor;Poltavets, Maryna;Sharapova, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Relative to the outer surface of the mastic coating, the reliability of the available waterproofing resource is determined by the ability to stabilize the structural characteristics in difficult climatic conditions. Organic components of mastic as a result of solar radiation, elevated temperatures and their alternating change, atmospheric oxidants, especially in industrial areas, have a tendency to self-polymerization and loss of low molecular weight components. This is the gradual loss of deformability and the transition to brittleness with its tendency to crack as the reasons for the gradual transition from normal to emergency operating condition.The presented mechanism of functioning of the coating surface indicates the expediency of increasing its components, able to stabilize the structure and prevent changes in deformability.Durability, hydrophobicity, water displacement, water absorption are accepted as estimating indicators. The main dependences of the influence of the lost additional components of mastic on the operational properties of the formed coating characterize the ability to provide successful resistance to environmental influences and longer stability. As a result, mastic acquires additional service life.

Characteristics of the Bimodal Tram in terms of Traffic Engineering (교통공학적 측면에서 바이모달 트램의 특성 연구)

  • Yoon, Hee-Taek;Park, Young-Kon;Chang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1760-1765
    • /
    • 2011
  • Recently, a variety of new transportation systems have been developed or introduced, but there has been a lot of confusion in the selection process of systems because there is no such domestic cases, and a lack of information on the systems. It does not make sense to analyze the strengths and weaknesses of the systems in a single frame because each system has different characteristics and purposes. It is important to compare the relative values of the systems considering the status of the project site, transport demand, costs, and environmental aspects of cities. In the present paper, the operational system and infrastructure technologies of the bimodal tram developed in Korea were investigated. Based on this, the values for the bimodal tram was compared with similar new transportation systems through several practice cases. It is expected to promote in the practical use of the bimodal tram through this study.

  • PDF

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System(II) - for Cutting Fluid Aerosol Prediction in Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(II) - 선삭공정의 절삭유 에어로졸 예측)

  • Chung, E.S.;Hwang, D.C.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.32-40
    • /
    • 2005
  • This paper presents the analytical approaches to predict cutting fluid aerosol formation characteristics in machining process. The prediction model which is based on the rotary atomization theory analyzes aerosol behaviors in terms of size and concentration. Experiments were tarried out to verify the aerosol formation prediction model under various operational conditions. The experimental results which are obtained by Dual-PDA measurement show resonable agreement with prediction results of aerosol concentration. This study can be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process in view of environmental consciousness.

  • PDF