• Title/Summary/Keyword: operation factor

Search Result 2,754, Processing Time 0.023 seconds

The Relationship between Affinity of Membrane and Optimum Operation Conditions in the Pervaporation of Aqueous Ethanol (에탄올 수용액의 투과증발에 있어서 막의 친화성과 최적 조업조건의 관계)

  • 전종기;명완재;임선기
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.34-43
    • /
    • 1991
  • The relationships between affinity of membranes and optimum operation conditions were investigated in the pervaporation of water(1)/ethanol(2) mixture through cellulose acetate(CA) membranes having more affinity to water and silicone rubber(SR) membranes having more affinity to ethanol. CA and SR membranes were prepared and amount of sorption, sorption selectivity, pervaporation separation factor and pervaporation rate in both of membranes were determined and compared. The effects of downstream pressure were analyzed using Thompson diagram and the sorption and pervaporation characteristics with composition of feed and operation temperature were examined in terms of affinity, activity coefficient, plasticizing effect and activation energy of individual species. In the separation of water through CA membranes, high performance of both pervaporation separation factor (water to ethanol, $[\alpha^2_1]_{PV}$) and pervaporation rate was obtained in the conditions of low downstream pressure, middle range of feed concentration and high temperature. In the separation of ethanol through SR membranes, pervaporation separation factor(ethanol to water, $[\alpha^2_1]_{PV}$) increased with downstream pressure and decreased with concentration of ethanol in feed and operation temperature, while pervaporation rate showed opposite trends to those of ($[\alpha^2_1]_{PV}$).

  • PDF

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.

A Study on the Operation and Function Improvement for apparel warehouse Using Fuzzy-AHP (Fuzzy-AHP를 활용한 의류 물류창고 운영개선에 관한 연구)

  • Kwon, Sung-Joon;Cha, Young-Doo;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.15 no.9
    • /
    • pp.23-33
    • /
    • 2017
  • Given the expansion of globalization and international trade, the number of apparel consumers is growing every year, making it difficult to estimate the amount of handling needed from the logistics industry. To determine which management factors are important and which ones require improvement, fuzzy AHP was used. Using this method, the factors were ranked in the final analysis as follows: The first and most important factor was training employees (0.17), while the second was fire hazard management (0.169); the third-highest factor was inbound and outbound goods (0.142), and the fourth was the warehouse management system. Barcode management was ranked fifth. By these results, we were able to analyze the processes of clothing warehouses, noting that although the factors appear independent, they are actually connected while proceeding with full management control. Moreover, because of the special characteristics of garments, employee management is crucial. Due to the vulnerability of these goods to fire hazards, this factor must be well managed.

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

Analysis of engine load factor for a 90 kW agricultural combine harvester based on working speed

  • Young-Woo Do;Taek-Jin Kim;Ryu-Gap Lim;Seung-Yun Baek;Seung-Min Baek;Hyeon-Ho Jeon;Yong-Joo Kim;Wan-Soo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.617-628
    • /
    • 2023
  • This study aimed to evaluate the engine load factor (LF) of a 90 kW agricultural combine harvester. The combine harvester used in this study is equipped with an electronic engine, and real-time engine data (torque and speed) was collected through a controller area network. The speed of the combine harvester during harvesting operation was divided into three levels (4, 5, and 6 km/h) for the representative operation speed range of 4 to 6 km/h. The LF was calculated using the engine load data measured in real time during harvesting. A weight was applied to the LF for each condition based on a survey of the usage. Results of the field test showed that the LF was 0.53, 0.64, and 0.87 at working speeds of 4, 5, and 6 km/h, respectively. The highest engine load factor was recorded at 6 km/h. Finally, based on the weight for the usage applied, the integrated engine LF was analyzed to be 0.69, which is approximately 144% higher than the currently applied LF of 0.48. A study on LF analysis for the entire work cycle, including idling and driving of the combine harvester, will be addressed in a future study.

Development and Verification of Indicators for a Foodservice & Nutrition Management Evaluation at a Hospital Nutrition Department (병원 영양부서의 급식 및 영양관리 평가 지표 개발 및 검증)

  • Lee, Joo-Eun;Kwak, Tong-Kung
    • Journal of the Korean Dietetic Association
    • /
    • v.15 no.4
    • /
    • pp.364-382
    • /
    • 2009
  • The purposes of this study were to develop the standard indicators to evaluate the food and nutrition systems in hospitals and to test the validity of those items scientifically. The results were as follows: First, the conceptual validity was examined with recognition degrees of importance from the hospital nutrition department managers. All of the hospital nutrition department's operation evaluation standards and the indicators' conceptual validity tested were in the range of 3.71~4.93 out of 5.0, and the mean score was 4.36. Therefore, the conceptual validity was verified. Second, to verify the factor validity of the items of the standards and indicators for the hospital nutrition department's operation evaluation, the standards and indicators were analyzed as key-factors. Key-factor analysis after vertical rotation showed that four factors appeared and were composed of (a) facilities management, (b) sanitation management, (c) operation & foodservice management, and (d) nutrition management. Third, the reliability of the standards and indicators for the hospital nutrition department's operation evaluation was analyzed and resulted in a score of 0.98, which showed good internal consistency. Fourth, the discriminative power of each item of the standards for the hospital nutrition department's operation evaluation was tested by checking the differences between groups with first quartile and forth quartile of total evaluation scores. The indicators having low distinction power were modified into obligatory items or eliminated for better differentiation.

  • PDF

Power Factor Correction Circuit For Inverter Air-Conditioner Using A Parallel Drive Method (병렬구동 방식을 이용한 인버터 에어컨용 역률제어회로)

  • 정용채;정윤철;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.9-12
    • /
    • 1998
  • In this paper, the power factor correction circuit using a parallel drive method is proposed so that the high power inverter air-conditioner with 3[ph] compressor motor may obtain the cost down and the improved performance. The adequate design procedures are presented to reduce the material costs by eliminating the power factor improving LC filter and derating output capacitor and inverter switches. Using the determined components, the prototype circuit with 6[kW] power consumption is built and tested to verify the operation of the proposed circuit.

  • PDF

Velocity Control of Induction Motor with high power factor (유도전동기의 고역률 속도 제어)

  • La, Dae-Hee;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.94-96
    • /
    • 1993
  • At an operating point of the induction motor, there are many sets of stator frequency and voltage. This paper presents an algorithm to determine the stator frequency and voltage which maximizes the power factor without any informations of motor parameters. Improvement of efficiency us also expected due to high-power-factor operation.

  • PDF

Analysis on the Characteristics of Voltage Unbalance Factor by Load Variations (부하 변동에 의한 전압불평형율의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance factor is mainly affected by load system rather than stable power system. Unbalanced voltage will draw a highly unbalanced current. As a result, the three-phase currents may differ considerably, thus resulting in an increased temperature rise in the machine. This paper presents a scheme on the characteristics of voltage and current unbalance factor under the load variation at the three phase 4-wire system. Load unbalance factor is measured by the power quality measurement apparatus and compared by the current unbalance factor. Two methods are indicated similar results. The voltage unbalance factor of the three-phase 4-wire system is approved by the field measurement. Each phase has an impedance each other by the unbalanced operation pattern and give rise to voltage unbalance.

Voltage Drop and Power Factor Compensation Relation of Induction Motor applied to Logistics System (물류 시스템 적용 유도전동기의 전압강하와 역률 보상 관계)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.155-159
    • /
    • 2018
  • Recently, the expansion or establishment of facilities for the logistics system is increasing. Conveyor facilities play a major role in sorting and transporting logistics. Induction motors are widely used for the operation of these conveyor systems. In the logistics system, a large number of induction motors are used. These motors have a considerable distance from the power source side and have a low power factor. The installation position for the power factor compensation of the induction motor is very important. Since the voltage drop depends on the length of the line, it is an important parameter in capacitor capacity determination for power factor compensation. The capacity of the capacitors installed to compensate the power factor of the inductive load should be designed to the extent that self-excitation does not occur. In this study, we analyze the method of compensating the proper power factor considering the voltage drop and the installation position of the induction motor in the logistics system.