• Title/Summary/Keyword: operation Modes

Search Result 815, Processing Time 0.027 seconds

VIBRO-ACOUSTIC TROUBLESHOOTING SOLVES 5MW BOILERFEED PUMP TESTRING NOISE & VIBRATION PROBLEMS

  • Gielen, L.;Vandenbroeck, D.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.836-841
    • /
    • 1994
  • This paper describes the global vibro-acoustic troubleshooting approach, used to identify and separate different sources of noise and vibrations on a boilerfeed pump testrig. The pump serves for rotor dynamic research of a EC-funded BRITE-Euram profect. This approach resulted in the identification of local structural flexibilities in the connections between the machinery and the base plate. The relative importance of the modes during normal operation is revealed by comparison with operational deformation shapes. The use of sound intensity mapping allowed to calculate the total sound power and to rank the equipment according to its sound power contribution. High acoustic levels were found and related to the fluid drive and to the piping system. Modification of the piping section resulted in a reduction of noise and vibration levels along the test loop and smooth operation in a wide suction pressure range.

  • PDF

Process operation improvement methodology based on statistical data analysis (통계적 분석기법을 이용한 공정 운전 향상의 방법)

  • Hwang, Dae-Hee;Ahn, Tae-Jin;Han, Chonghun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1516-1519
    • /
    • 1997
  • With disseminationof Distributed Control Systems(DCS), the huge amounts of process operation data could have been available and led to figure out process behaviors better on the statistical basis. Until now, the statistical modeling technology has been susally applied to process monitoring and fault diagnosis. however, it has been also thought that these process information, extracted from statistical analysis, might serve a great opportunity for process operation improvements and process improvements. This paper proposed a general methodolgy for process operation improvements including data analysis, backing up the result of analysis based on the methodology, and the mapping physical physical phenomena to the Principal Components(PC) which is the most distinguished feature in the methodology form traditional statistical analyses. The application of the proposed methodology to the Balst Furnace(BF) process has been presented for details. The BF process is one of the complicated processes, due to the highly nonlinear and correlated behaviors, and so the analysis for the process based on the mathematical modeling has been very difficult. So the statisitical analysis has come forward as a alternative way for the useful analysis. Using the proposed methodology, we could interpret the complicated process, the BF, better than any other mathematical methods and find the direction for process operation improvement. The direction of process operationimprovement, in the BF case, is to increase the fludization and the permeability, while decreasing the effect of tapping operation. These guide directions, with those physical meanings, could save fuel cost and process operator's pressure for proper actions, the better set point changes, in addition to the assistance with the better knowledge of the process. Open to set point change, the BF has a variety of steady state modes. In usual almost chemical processes are under the same situation with the BF in the point of multimode steady states. The proposed methodology focused on the application to the multimode steady state process such as the BF, consequently can be applied to any chemical processes set point changing whether operator intervened or not.

  • PDF

A Study on the Improvement of Optimal Load Range for Sliding Pressure Operation of coal-fired Power Plant (석탄화력 발전소 최적 변압운전 부하 범위 개선에 대한 연구)

  • Lee, Sang-Hun;Wang, Min-Seok;Wee, Sang-Bong;Son, Yung-Deug
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.675-680
    • /
    • 2019
  • The coal-fired power plant is operated by a combined operation method, which is operated by sliding pressure operation under low load and by fixed pressure operation under high load for improved efficiency. The combined operation is divided into two and three valve open modes. Each plant is operated by selecting the turbine control valve mode in accordance with the manufacturer's recommendation, but is not really operating at the optimal sliding pressure operation according to load range, also Load range of each plant is configured differently. The internal efficiency of the high-pressure turbines is reduced due to loss of the turbine valves and the plant efficiency is reduced. To solve these problems, In this paper, the optimum load range is selected through the analysis method of thermal performance by each load in order to improve the optimum variable pressure operation load range by turbine control valve mode.

Vibration Analysis for the L-1 Stage Bladed-disk of a LP Steam Turbine (증기터빈 저압 L-1단 블레이드-디스크 연성 진동 특성 분석)

  • Lee, Doo-Young;Bae, Yong-Chae;Kim, Hee-Soo;Lee, Yook-Ryun;Kim, Doo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • This paper studies causes of the L-1 blade damage of a low pressure turbine, which was found during the scheduled maintenance, in 500 MW fossil power plants. Many failures of turbine blades are caused by the coupling of aerodynamic forcing with bladed-disk vibration characteristics. In this study the coupled vibration characteristics of the L-1 turbine bladed-disk in a fossil power plant is shown for the purpose of identifying the root cause of the damage and confirming equipment integrity. First, analytic and experimental modal analysis for the bladed-disk at zero rpm as well as a single blade were performed and analyzed in order to verify the finite element model, and then steady stresses, natural frequencies and corresponding mode shapes, dynamic stresses were calculated for the bladed-disk under operation. Centrifugal force and steady steam force were considered in calculation of steady and dynamic stress. The proximity of modes to sources of excitation was assessed by means of an interference diagram to examine resonances. In addition, fatigue analysis was done for the dangerous modes of operation by a local strain approach. It is expected that these dynamic characteristics will be used effectively to identify the root causes of blade failures and to perform prompt maintenance.

Implementation of a Power Simulator for Energy Balance Analysis of a LEO Satellite (저궤도 위성의 에너지 균형 분석을 위한 전력 시뮬레이터의 구현)

  • Jeon, Moon-Jin;Lee, Na-Young;Kim, Day-Young;Kim, Gyu-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.176-184
    • /
    • 2010
  • The power simulator for a LEO satellite is a useful tool to analyze mission validity and energy balance for various mission scenarios by estimating power generation, power consumption, depth of discharge, bus voltage, charging/discharging current, etc. In this paper, it is described the calculation algorithm of the solar array (SA) power, the satellite load power and the battery modeling method to develop a satellite power simulation. To simulate the SA power generation, three different operation modes (DET, MPPT, CV) of SAR (Solar Array Regulator) are considered with a SA model. The satellite load power is estimated using the satellite unit power database, the unit on/off configuration at some satellite operation modes. The bus voltage and battery charging/discharging current at the specific DoD (Depth of Discharge) are calculated based on the battery characteristics. By this satellite power simulator, it can be conveniently analyzed the energy balance and the validity of a planned mission of a LEO satellite.

Experimental and Numerical Studies on Heat/Smoke Behavior due to a Fire on Underground Subway Platform (II) - Numerical Approach - (지하철 역사 승강장 화재발생시 열/연기 거동 분석을 위한 실험 및 수치 연구(II) - 수치적 접근 -)

  • Chang, Hee-Chul;Kim, Tae-Kuk;Park, Won-Hee;Kim, Dong-Hyeon
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.15-20
    • /
    • 2006
  • In this study the flow characteristics of smoke and heat on a bank type platform of the underground subway station are studied numerically by considering two different emergency operation modes. Effects of the natural flow through the tunnel and the stair ways are considered in the numerical simulations by using the measured velocities presented in Part I as the boundary condition. Distributions of heat, smoke, visible range and toxic gas on the platform are analysed for different smoke extraction flowrates corresponding to the two different emergency operation modes. The numerical results show that the extraction flowrate affects the smoke control performance significantly by improving the smoke removal performance as the extraction flowrate is increased.

Treatment Plan Delivery Accuracy of the ViewRay System in Two-Headed Mode

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2016
  • The aim of this study is to investigate the delivery accuracy of intensity-modulated radiation therapy (IMRT) plans in the two-headed mode of the ViewRay$^{TM}$ system in comparison with that of the normal operation treatment plan of the machine. For this study, a total of eight IMRT plans and corresponding verification plans were generated (four head and neck, two liver, and two prostate IMRT plans). The delivered dose distributions were measured using ArcCHECK$^{TM}$ with the insertion of an ionization chamber. We measured the delivered dose distributions in three-headed mode (normal operation of the machine), two-headed mode with head 1 disabled, two-headed mode with head 2 disabled, and two-headed mode with head 3 disabled. Therefore, a total of four measurements were performed for each IMRT plan. The global gamma passing rates (3%/3 mm) in three-headed mode, head 1 disabled, head 2 disabled, and head 3 disabled were $99.9{\pm}0.1%$, $99.8{\pm}0.3%$, $99.6{\pm}0.7%$, and $99.7{\pm}0.4%$, respectively. The difference in the gamma passing rates of the three- and two-headed modes was insignificant. With 2%/2 mm, the rates were $96.6{\pm}3.6%$, $97.2{\pm}3.5%$, $95.7{\pm}6.2%$, and $95.5{\pm}4.3%$, respectively. Between three-headed mode and head 3 disabled, a statistically significant difference was observed with a p-value of 0.02; however, the difference was minimal (1.1%). The chamber readings showed differences of approximately 1% between three- and two-headed modes, which were minimal. Therefore, the treatment plan delivery in the two-headed mode of the ViewRay$^{TM}$ system seems accurate and robust.

Operation Mode in Sequencing Batch Reactor for Nitrogen Removal (질소제거를 위한 연속회분식 반응조의 운전방식 연구)

  • Shin, Hang Sik;Kwon, Joong Chun;Koo, Ja Kong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.77-88
    • /
    • 1988
  • This research investigated the effect of COD/N ratio on nitrogen removal, and the use of organics in raw wastewater as a carbon source for denitrification in SBR(Sequencing Batch Reactor) systems. Four laboratory scale reactors were operated in three modes. Only the difference between modes were; Mode I operated in aerated condition during fill while Mode II in anoxic condition and Mode III operated on two fills per cycle in anoxic condition. When COD/N ratio increased, total nitrogen removal efficiencies increased from 8.7 to 57.7 percent in Mode I, from 28.9 to 83.2 percent in Mode II and from 42.7 to 97.8 percent in Mode III, respectively. COD removal efficiencies ranged from 93 to 98 percent throughout the study. SBR operation in Mode III of feeding twice per cycle in anoxic condition was an effective operating method for nitrogen removal and nitrogen concentration in effluent can be estimated using influent COD and nitrogen concentrations.

  • PDF

Regulated Peak Power Tracking (RPPT) System Using Parallel Converter Topologies

  • Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.870-879
    • /
    • 2011
  • Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.

The influence of transom pipe gap on the resonance response in motorized bogie and traction motor system (트랜섬 파이프 간격이 동력대차-견인전동기간 강체 모드 공진응답에 미치는 영향에 관한 연구)

  • Kim, Jaehwan;Song, Seeyeop;Lim, Hyosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.340-343
    • /
    • 2019
  • In this paper, a problem of mechanical resonance between traction motor's rigid body mode and traction motor's excitation force is introduced, and a bogie design variable affecting the control of resonance response is reviewed numerically. To solve the resonance problem in rotating machinery with variable rotational speeds, resonance frequency should be out of rotational machine's operation range or dynamic stiffness of structures should be increased for resonance response enough to be low. In general, operation range of a traction motor is from 0 r/min to 4800 r/min. It is not possible that all bogie modes are more than 80 Hz. Therefore, it is very important to find design factor affecting resonance response of traction motor's rigid body modes. It is found that key design variable is the gab between transom pipes from finite element analysis. The larger gab is, the higher resonance response when resonance between traction motor's excitation force and traction motor's rigid body mode is happened.