• Title/Summary/Keyword: operating vehicle

Search Result 1,054, Processing Time 0.035 seconds

A Study on the Analysis Method of Emission Intensity of GHGs utilizing Real World Vehicle Driving Information (실차 운행정보를 활용한 온실가스 배출지표 분석 방법에 대한 연구)

  • Kim, Yong Beom;Kim, Pil Su;Han, Yong Hee;Lee, Heon Ju;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.19-29
    • /
    • 2016
  • In this study, the emission intensity calculation method of GHGs was developed by considering the characteristics of the models and time series. The telematics device was installed on the car (OBD-II) to collect information on the operation conditions from each sample vehicle of public authorities. Based on emission intensity of GHGs, it presented a methodology of quantitative comparison of GHGs emission by vehicles. Collected driving information of vehicle was used for operating characteristics analysis of the target vehicle, and it was confirmed different operating characteristics through comparison of the results and previous study. GHGs emission intensity were analyzed considering characteristics of vehicle type by passenger car, van, cargo, and considering characteristics of the time series by summer, winter, and intermediate. From the analysis result, it was calculated GHGs emission intensity based on mileage ($g\;CO_2\;eq./km$) and operating time ($g\;CO_2\;eq./sec$).

Evaluation of the Aging Life of the Rubber Pad in Power Window Switch

  • Kang, Yong Kyu;Choi, Byung Ik;Woo, Chang Su;Kim, Wan Doo
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.351-358
    • /
    • 2019
  • To evaluate the aging of a rubber pad in power window switch which is the part of a vehicle, the accelerated thermal aging test of rubber pad material is performed. Finite element analysis was performed using the nonlinear material constants of the rubber pad to calculate the operating force, and the Arrhenius relationship was derived from the aging temperature and time. The aging test was performed at 150, 180, 210, or 240 ℃ for 1 to 60 days. When the operating force of the rubber pad is changed by 10% from the initial value, the service life is expected to be 113 years, which is much longer than the life of the vehicle. This indicates that the aging life of the rubber pad is sufficiently safe and the operating force of the rubber pad during the life of the vehicle (20 years) was decreased by approximately 8.4%. By examining the correlation between the shear elastic modulus and operating force calculated from finite element analysis under each aging test condition, the changes in the operating force of the rubber pad and the shear elastic modulus showed good linear relationship. The aging life could be predicted by the change in shear elastic modulus and a process for predicting the aging life of automotive power window switch rubber pad parts is described herein.

Analysis and Evaluation of Interior Noise for KTX Passenger car in the Conventional line (기존선 구간에서의 KTX 객차 실내소음 평가 및 분석)

  • Lee Chan-Woo;Kim Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.675-678
    • /
    • 2004
  • Comparative analysis it did the interior noise of the KTX vehicle and the P-P Semaeul vehicle from the conventional line Homan Seodaejeon-Hanam section from the research which it sees. The test result KTX vehicle appeared when the P-P Semaeul vehicle compared to 20 - 25 KM/H speed up operating commerce operation speed even, the standard values 66 dBA the lowers 55 - 62 dBA. P-P Semaeul vehicle interior noise of the identical test section 63 dBA it will compare and there is a possibility the KTX vehicle knowing from the existing line operating hour interior noise.

  • PDF

Controller design for depth control of vehicle under seawater (수중운동체의 심도제어를 위한 제어기 설계)

  • ;;Yoon, Kang Sup;Lee, Man Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.24-34
    • /
    • 1996
  • In ordaer to hold an underwater vehicle at a certain depth, buoyancy that acts on the underwater vehicle can be modulated. In this research, buoyancy that could control depth of underwater vehicle is generated by a buoyancy bag. Solenoid valves are operated by pulse with modulation(PWM) method. State equation, in consideration of the volume of buoyancy bag, pressure inside bag, and dynamic of the underwater vehicle, is derived. This system is very unstable, inculdes modelling error and nonlinearity. In depth control system, maintanance of performance is required., anainst vatiation of systerm parameter and operating depth, and designed. Through the computer simulation, performance is comparerd for each controllers.

  • PDF

A Study on Regional and Individual Preference Sound Quality for Luxury Vehicle (고급 차량음의 지역별 개인별 선호 음질에 관한 연구)

  • Kim, Seong-Hyeon;Park, Dong-Chul;Hong, Seok-Gwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.364-369
    • /
    • 2012
  • The vehicle sound classified into driving sound due to power-train, operating sound due to electric motor like sunroof, door lock and electronic sound. These vehicle sound has various features depend on the characteristic of sound that user required. And it based on cultural and regional difference of user. In this study, the user required vehicle sound characteristics for luxury sedan was investigated in overall viewpoint. And virtual target sound was developed through the result of user preference investigation. Next, Jury test was carried out in Germany, USA and Korea for evaluating the target sound. And the regional and individual difference of preference was analyzed through the result of jury test. This result of research will be contributed to design of vehicle sound quality and target sound setting.

  • PDF

A Study on the Fuel Economy Prediction Method Based on Vehicle Power Analysis of PRIUS III (프리우스 III의 차량 출력 분석에 기초한 연비 예측 방안에 관한 연구)

  • Chung, Jae-Woo;Seo, Young-Ho;Choi, Yong-Jun;Choi, Sung-Eun;Kim, Hyoung-Gu;Jung, Ki-Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.97-106
    • /
    • 2011
  • Both an optimal design of the engine operating strategy and fuel economy prediction technique for a HEV under the vehicle driving condition are very crucial for the development of vehicle fuel economy performance. Thus, in this study, engine operating characteristics of PRIUS III were analyzed with vehicle running conditions and the correlations between vehicle tractive power and fuel consumption were introduced. As a result, fuel economy performance of PRIUS III with various test modes were predicted and verified. Errors of predicted fuel economy were between -5% and -1%.

Shifting Algorithm and Response Characteristics of CVT (CVT의 변속 알고리듬과 응답특성)

  • Sung, D.H.;Kim, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.9-17
    • /
    • 1994
  • In this study, a shifting algorithm of CVT was suggested for the two(2) driving modes : (1) power mode and (2) economy mode. Shifting algorithm must be obtained to make the engine run on the optimum operating line for the desired performance of the vehicle. Optimum operating lines of the engine were obtained by connecting the shortest way of the iso-power lines for the power mode and by connecting the shortest way of the BSFC curves for the economy mode. Also dynamic model of CVT vehicle was derived considering the throttle and the brake operation. By using the shifting algorithm and the CVT vehicle model, numerical simulations were performed to estimate the performance of CVT. Simulation results showed that comparing the performance of the conventional 4-speed automatic transmission, acceleration performance of the CVT vehicle was almost same with the AT vehicle for the power mode and the fuel economy of CVT was 14% superior than that of AT for the economy mode.

  • PDF

Realization of Logistics Safety Management System By Operating Advanced Vehicle Safety Management Device (첨단 차량 안전관리장치 운영을 통한 물류 안전관리시스템 구현)

  • Moon, Hoi-Kwon;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • This study aims to provide a real-time information to the driver by effectively operating the advanced safety device attached to the freight vehicle, thereby minimizing insecure behavior of the driver such as speeding, rapid acceleration, sudden braking, And improve driving habits to prevent accidents and save energy. Advanced safety equipment is a device that warns the driver that the vehicle leaves the driving lane regardless of the intention of the driver and reduces the risk of traffic accidents by mitigating or avoiding collision by detecting a frontal collision during driving.The main contents of this report are as follows: In case of installing a warning device on a lane departing vehicle (excluding a light vehicle) and a lorry or special vehicle with a total weight exceeding 3.5 tonnes, the driver must continue to operate unless the driver releases the function.In addition, when the automatic emergency braking system is installed, the structure should be such that the braking device is operated automatically after warning the driver when the risk of collision with the running or stopped vehicle in the same direction is detected in front of the driving lane.

Comparison of Fuel Consumption Estimation for Passenger Cars (승용차 유류소모량 산정 방법의 비교 연구)

  • Yoo, In-Kyoon;Kim, Je-Won;Lee, Su-Hyeong;Ko, Kwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.167-175
    • /
    • 2011
  • Evaluation of fuel consumption for the various road condition and vehicle type is necessary to perform the economic analysis of road construction which is important for the efficient design and management of road. Economic analysis of road should consider the social cost which can be divided into agency cost including initial construction expense, maintenance cost, and so on, and user cost consisting of vehicle operating cost, congestion cost, etc. Since vehicle operating cost depends on the traffic volume, fuel consumption that is a major part of vehicle operating cost will change by traffic volume as well. Fuel consumption is significantly affected by vehicle speed and road condition, especially the roughness. Thus, fuel consumption should be evaluated in terms of road condition, which is not currently considered. In this study, the estimation model of fuel consumption for the passenger cars in Korea has been developed by considering the road condition. First, the relationship between vehicle speed and fuel consumption that is used to calculate the vehicle operating cost for investment evaluation of transportation facility and the initial feasibility study of road construction was investigated. Second, with the consideration of road roughness, fuel consumption of the passenger car was measured. From the measurement, it was found that fuel consumption increased by $80m{\ell}$ per 100km driving as the roughness increased by 1m/km. Therefore, it is recommended that for the economic analysis of road design and management, the fuel consumption should be a function of road roughness.

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.