• Title/Summary/Keyword: operating temperature

Search Result 3,666, Processing Time 0.033 seconds

Numerical Study on Heat Transfer Characteristics in a directly Heated $SO_3$ Decomposer for the Sulfur-Iodine process (황-요오드 공정용 직접접촉 삼산화황 분해반응기내 열전달 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Shin, Young-Joon;Tak, Nam-Il;Lee, Ki-Young;Chang, Jong-Wha;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2244-2249
    • /
    • 2007
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed by using a computational fluid dynamics code(CFD) with the CFX 5.7.1. The use of a directly heated decomposition reactor in conjunction with a VHTR allows higher decomposition reactor operating temperature. However, the thermochemical and hybrid hydrogen production processes accompanied with the high temperature and strongly corrosive operating conditions basically have material problems. In order to resolve these problems, we carried out the development of a structural material and equipment design technologies. The results show that the maximum temperature of the structural material (RA330) could be maintained at 800$^{\circ}C$ or less. Also, it can be seen that the mean temperature of the reaction region packed with catalysts in the $SO_3$ decomposition reactor could satisfy the temperature condition of around 850 $^{\circ}C$ which is the target temperature in this study.

  • PDF

A Study on the Performance Test and Verification of Heat Transfer characteristics in Automobile Rear Window Heater (자동차 후면 유리 열선의 열전달특성에 따른 성애제거 성능평가 및 성능검증 방법에 관한 연구)

  • Juen, H.Y.;Lee, C.K.;Bae, H.J.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • Both theoretical and experimental investigations were conducted to analyze defrosting behavior of a window heater operating in the low outdoor temperature($-20^{\circ}C$). To achieve this purpose, first a warm-chamber experiment($23^{\circ}C$) was performed to measure inner and outer surface temperature of the rear window(heated by the electric heater supplying 195 W) as functions of both time and position. Secondly, a cold chamber experiment was made to continuously record defrosting process of the frosted window. From the comparisons of the two experimental results, it was found that there was a similarity between the spatial distributions of both temperature and remaining frost. Thus, the temperature data from the warm-chamber experiments can be utilized to predict an expected zone covered with remaining frosts, and this approach can also be adopted in the inspection process in order to economically guarantee optimized performance of the window heater. Finally, an analytical model based on one-dimensional, steady-state heat transfer theories was proposed and successfully predicted the outer surface temperature of the rear window surrounded by cold air($-20^{\circ}C$) for the given operating conditions(heater power, inside and outside heat transfer coefficients, and surrounding air temperature, etc.).

  • PDF

Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(III) - Operating Characteristics of a Vapour Compression type Heat Pump Using Alternate Refrigerant - (엔진구동 지열 열펌프의 성능 분석(III) - 대체냉매를 이용한 증기압축식 열펌프의 운전특성 -)

  • 김영복;이승규;김성태;송대빈;강호철
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.513-522
    • /
    • 1999
  • This study was performed to get the optimal operating conditions of an water-air compact heat pump system using R-134a. The experiments was done for three elvels of the air mass flow rate and the compressor driving speed during air-heating process. The temperature of the air at the condenser inlet and outlet was 17~23$^{\circ}C$, 36~44$^{\circ}C$, respectively. The average temperature of the refrigerant at the evaporator and condenser was 1$0^{\circ}C$, 6$0^{\circ}C$, respectively. The temperature of the refrigerant was not depending on the air mass flow rate and the compressor driving speed. The pressure of the refrigerant at the condenser inlet and outlet was ranged of 10~18.5kg/$\textrm{cm}^2$ and that at the evaporator was ranged of 3.1~3.3kg/$\textrm{cm}^2$. The pressure drop at the condenser and evaporator was about 1.5, 1.2 kg/$\textrm{cm}^2$, respectively. The performance of coefficient for air heating was about 3.3~4.0.

  • PDF

Influence of the Effective Thermal Thansport Length on the Heat Transfer Characteristics of a Liquid-Metal Heat Pipe for High-temperature Solar Thermal Devices (유효열이송거리가 고온 태양열기기용 액체금속 히트파이프의 열전달 특성에 미치는 영향)

  • Park, Cheol-Min;Boo, Joon-Hong;Kim, Jin-Soo;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.220-225
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Two layers of stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The effective heat transport length, the thermal load, and the operating temperature were varied as thermal transport conditions of the heat pipe. The thermal load was supplied by an electric furnace up to 1kW and the cooling was performed by forced convection of air The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total effective thermal conductivity was as low as 43,500 W/m K for heat flux of 176.4 kW/$m^2$ and of operating temperature of 1000 K.

  • PDF

An Accelerated Degradation Test of Nuclear Power Plants Communication Cable Jacket (원자력 발전소용 통신케이블 자켓의 가속열화시험)

  • Jung, Jae Han;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.969-980
    • /
    • 2017
  • Purpose: The purpose of this study was to estimate the lifetime, and verify the target lifetime at steady state temperature, of communication cable jackets used in nuclear power plants. Method: This study was completed according to test and analysis methods required by international standards. After measuring the residual elongation(%) of specimens at specific points in time with the accelerated degradation test, average failure time of each temperature was computed. Thus, the activation energy could be derived by applying the temperature-Arrhenius law to estimate cable jacket lifetime at steady state temperature. Results: The cable jacket lifetime was estimated as 363.8 years assuming a normal nuclear power plant operating temperature of $90^{\circ}C$. Conclusion: To ascertain stable operating conditions for a nuclear power plant, accelerated degradation tests were performed according to the Arrhenius law for components of the nuclear power plants. The lifetime was estimated from the degradation data collected during the accelerated degradation test.

Calculation of Maximum Allowabel Temperature Difference for Life Design of Valve Casings for Steam Turbines of Fossil Power Plants (화력발전용 증기터빈 밸브 케이싱의 수명 설계를 위한 최대허용온도차 계산)

  • Ha, Joon-Wook;Kim, Tae-Woan;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.46-52
    • /
    • 1999
  • Large valves for steam turbines of fossil power plants are exposed to a severe mechanical and thermal loading resulting from steam with high pressure and high temperature. Valve casings are designed to withstand such a loading. During the operation of a plant, temperatures at inner and outer surface of the casings are measured and steam flow is controlled so that the measured difference is lower than the maximum allowable value determined in the design stage. In this paper, a method is presented to calculate the maximum allowable temperature difference at the inner and outer surface of valve casings for steam turbines of fossil power plants. The finite element method is used to analyze distribution of temperature and stresses of a casing under the operating condition. Low cycle fatigue and creep rupture are taken into consideration to determine the maximum allowable temperature difference. The method can be usefully applied in the design stage of the large valves for the steam turbines, contributing to safe and reliable operation of the fossil power plants.

  • PDF

Thermal Characteristics Analysis by Ambient and Operating Temperature according to the Kinds of Terminations in Underground Power Cable Systems (지중송전케이블 종단접속함 종류에 따른 외기 및 운전온도에 의한 열특성 분석)

  • Jung, Chae-Kyun;Kang, Ji-Won;Lee, Bang-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1154-1160
    • /
    • 2015
  • This paper describes the thermal characteristics of underground power cable system terminations according to the change of ambient temperature as well as operating temperature. Recently, the failure has been gradually increasing in outdoor termination during winter season because the power demand was increased by electricity heating system. The power demand and outdoor temperature is difference between day time and night time. The temperature difference has an influence on conductor extension and shrinkage due to conductor force as well as thermal mechanical characteristics. These phenomena have daily repeated during heating and cooling period of conductors. In these cases, the insulation of outdoor terminations might be degraded by the reduced interface pressure surrounding stress relief cone. Therefore, in this paper, the thermal characteristics are variously analysed by simulation considering power demand and ambient temperature condition during winter season at epoxy type termination as well as slip-on type termination

An Experimental Study on the Heat Transfer Characteristics of a High-temperature Sodium Heat Pipe Depending on the Thermal Transport Conditions (고온 나트륨 히트파이프에서 열이송 조건에 따른 열전달 특성에 대한 실험 연구)

  • Park, C.M.;Boo, J.H.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2340-2345
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. Two layers of Stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. As thermal transport conditions, the effective transport length, the heat flux, the tilt angle and the operating temperature were varied. The heat was supplied by an electric furnace up to 1 kW and the cooling was performed by forced convection of air. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total thermal resistance was as low as $0.036^{\circ}C/W$ at $175.8\;kW/m^2$ of heat flux and $700^{\circ}C$ of operating temperature.

  • PDF

Development of Hardware for Controlling Abnormal Temperature in PCS of Photovoltaic System (태양광발전시스템의 PCS에서 이상 온도 제어를 위한 하드웨어개발)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Yoon-Bok
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • This paper is purposed to develop hardware for controlling abnormal temperature that can occur environment and component itself in PCS. In order to be purpose, the hardware which is four part(sensing, PLC, monitoring and output) keep detecting temperature for critical components of PCS and can control the abnormal temperature. Apply to the hardware, it is selected to PV power generation facilities of 20 kW in Cheong-ju city and measured the data for one year in 2017. Through the temperature data, it is found critical components of four(discharge resistance, DC capacitor, IGBT, DSP board) and entered the setting value for operating the fan. The setting values for operating the fan are up to $130^{\circ}C$ in discharge resistance, $60^{\circ}C$ in DC capacitor, $55^{\circ}C$ in IGBT and DSP board. The hardware is installed at the same PCS(20 kW in Cheong-ju city) in 2018 and the power generation output is analyzed for the five days with the highest atmospheric temperature(Clear day) in July and August in 2017 and 2018 years. Therefore, the power generation output of the PV system with hardware increased up to 4 kWh.

1-D Modeling of Heater Surface Temperature Distribution in EHC-based Urea-SCR System (EHC 기반 Urea-SCR 시스템 히터 표면온도 분포의 1-D 모델링)

  • Park, Sunhong;Son, Jihyun;Moon, Seoksu;Oh, Kwangchul;Jang, Sungwook;Park, Sungsuh
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • In upcoming Post Stage-V and Tier 5 regulations of construction machineries, nitrogen oxide (NOx) emissions are strictly limited in cold start conditions. In response to this, a method of improving NOx conversion efficiency has been applied by installing an electric heating catalyst (EHC) in front of conventional urea-SCR systems so that the evaporation and thermal decomposition of urea-water solution can be promoted in cold start conditions. In this strategy, the evaporation and thermal decomposition of urea-water solution and corresponding NOx conversion efficiency are governed by temperature conditions inside the EHC. Therefore, characterizing the temperature distribution in the EHC under various operating conditions is crucial for the optimized operation and control of the EHC in Urea-SCR systems. In this study, a 1-D modeling analysis was performed to predict the heater surface temperature distribution in EHC under various operating conditions. The reliability of prediction results was verified by comparing them with measurement results obtained using an infrared (IR) camera. Based on 1-D analysis results, the effects of various EHC operation parameters on the heater surface temperature distribution were analyzed and discussed.