• Title/Summary/Keyword: operating load-factor

Search Result 165, Processing Time 0.023 seconds

Steady-State Analysis of ZVS and NON-ZVS Full-Bridge Inverters with Asymmetrical Control for Induction Heating Applications

  • Yachiangkam, Samart;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.544-554
    • /
    • 2015
  • This paper presents a steady-state operation analysis of full-bridge series-resonant inverters focusing on the distorted load current due to low-quality-factor resonant circuits in induction heating and other applications. The regions of operation based on the zero-voltage switching (ZVS) and non-zero-voltage switching (NON-ZVS) operations of the asymmetrical voltage-cancellation control technique are identified. The effects of a distorted load current under a wide range of output powers are also analyzed for achieving a precise ZVS operating region. An experimental study is performed with a 1kW prototype. Simulation and experimental studies have confirmed the validity of the proposed method. An efficiency comparison between the variable frequency method and the conventional fixed-frequency method is provided.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

Evaluation of exhaust emissions factor of agricultural tractors using portable emission measurement system (PEMS) (PEMS를 이용한 농업용 트랙터의 배기가스 배출계수 평가)

  • Wan-Soo Kim;Si-Eon Lee;Seung-Min Baek;Seung-Yun Baek;Hyeon-Ho Jeon;Taek-Jin Kim;Ryu-Gap Lim;Jang-Young Choi;Yong-Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.15-24
    • /
    • 2023
  • The aim of this study was to measure and evaluate the exhaust emission factors of agricultural tractors. Engine characteristics and three exhaust emissions (CO, NOx, PM) were collected under actual agricultural operating conditions. Experiments were performed on idling, driving, plow tillage, and rotary tillage. The load factor (LF) was calculated using the collected engine data, and the emission factor was analyzed using the LF and exhaust emissions. The engine characteristics and exhaust emissions were significantly different for each working condition, and in particular, the LF was significantly different from the currently applied 0.48 LF. The data distribution of exhaust emissions was different depending on the engine speed. In some conditions, the emission factor was higher than the exhaust emission standards. However, since most emission limit standards are values calculated using an engine dynamometer, even if the emission factor measured under actual working conditions is higher, it cannot be regarded as wrong. It is expected that the results of this study can be used for the inventory construction of a calculation for domestic agricultural machinery emissions in the future.

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.

Parallel Operation Characteristics of Utility Interactive Photovoltaic System and Revolving Field Type Synchronous Generator (계통연계 태양광발전시스템과 회전계자형 동기발전기의 병렬운전 특성)

  • Ryu, Yeon-Soo;Yoo, Wang-Jin;Lee, Checl-Gyu;Moon, Jong-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.43-48
    • /
    • 2008
  • Through simulations and field experiment on A.C. parallel operation of both Utility Interactive Photovoltaic System and Diesel Engine Revolving Field Type Synchronous Generator, following factors have been found. First, the inverter should be operated in three modes of frequency(mode.1: ${\pm}$0.3Hz, mode.2: ${\pm}$1Hz, mode.3: ${\pm}$2Hz) as default, considering properties of operating Synchronous Generator. Second, as a result of supplying 13.5kW of residual power, it has been found that Synchronous Generator takes the power input only as reactive power, because it was electrically stable with frequency of 60.14Hz and high voltage of 222.3V even when power factor was -0.94. Besides, it was mechanically stable, too, because the quake, noise, and temperature of Synchronous Generator in this case were 7.5mm/s, 97dB, and $6^{\circ}C$ respectively, which were lower than normal load connection of 145.6kW; 11.03mm/s. Thus, load share of Revolving Field Type Synchronous Generator reduces according to the supply of Photovoltaic System to the load power. In this experiment, 200kW of Synchronous Generator and 40kW of Photovoltaic System were operated in parallel. The load share was 20% in maximum. and 11.1lit/hr of fuel was saved.

  • PDF

Lubrication Effect of Journal Bearing according to its Eccentricity and Attitude Angle (베어링 편심도와 자세각에 따른 저어널 베어링의 윤활효과)

  • Kim, Jong-Do;Wang, Yi-Jun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.88-95
    • /
    • 2015
  • The thickness of adsorbed molecular layers is the most critical factor in studying thin-film lubrication, and it is the most essential parameter that distinguishes thin-film from thick-film lubrication analysis. The thin film between the shaft and bearing surface within a very narrow gap was considered. The general Reynolds equation has been derived for calculating thin-film lubrication parameters affecting the performance of the circular journal bearing. Investigation of the load-carrying capacity and pressure distribution for the journal bearing considering the adsorbed layer thickness has been carried out. A Reynolds equation appropriate for the journal bearing is used in this paper for the analysis, and it is discussed using the finite difference method of the central difference scheme. The parameters, such as eccentricity and attitude angle, are used for discussing the load-carrying capacity of the journal bearing. The results reported in this paper should be applied to analysis of the journal bearing with different lubrication factors. The steady-state analysis of the journal bearing is conducted using the Reynolds model under thin-film lubrication conditions. For a journal bearing, several parameters, such as a pressure, load capacity, and pressure components of the bearing can be obtained, and these results can be stored in a sequential data file for later analysis. Finally, their distribution can be displayed and analyzed easily by using the MATLAB GUI technique. The load-carrying capability of the journal bearing is observed for the specified operating conditions. This work could be helpful for the understanding and research of the mechanism of thin-film lubrication.

Development Process of Mechanical Structure for a Large Radar (대형 레이더 기계구조부 개발 절차)

  • Shin, Dongjun;Lee, Jonghak;Kang, Youngsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.

Mathematical Analysis and Experiment Validation of Modular Multilevel Converters

  • Zhang, Yushu;Adam, Grain Philip;Lim, Tee-Chong;Finney, Stephen J.;Williams, Barry W.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • This paper describes operating and capacitor voltage balancing of the modular multilevel converter. The paper focuses on sizing of the cell capacitor and establishes approximate expressions for the capacitor voltage. Simulations and experiments results obtained from three-level modular converter are used to demonstrate its viability in medium voltage applications. It is shown that the modular converter can operate over the full modulation index linear range independent of load power factor.

A Study on the Mathematical Interpretation o Hydraulic Behaviour in Packing Tower (충전탑에서 수력학적 거동의 수학적 해석 연구)

  • 김석택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • This study was carried out to interpret mathematically hydraulic behaviour in packing tower which packed 50 mm plastic Hiflow-ring with a dimension of 300 mm wide and 1,400 mm high. In view of energy saving, the recent packing. 50 mm plastic Higlow-ring was superior to conventional packings because of low pressure drop in high loads. As relative error between numerically predicted and experimentally obtained values was less then 6% in the loading and flooding point, it found that therir results appeared to be adequate. Comparison of hose two values in both dry and wet packing conditions. relative errors amount to 3.96 and 5.6%, respectively. In order to evaluate the operating characteristics of packing, the type, size, and material for packings must be estimated in various system and loads. This study is able to calculated pressure drop, hold-up, gas and liquid loads using mathematical interpretation. For these calculation, the specific constants of each packings must be calculated first all. The method of mathematical interpretation in this study turned out to be superior to the existing methods because of reduced errors at loading and flooding point.

  • PDF

A study on the depositional wear between different metals (이종 금속간의 용착마모에 관한 연구)

  • 신문교;이우환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.74-88
    • /
    • 1985
  • The wear becomes the most complicated cause of making various machineries short lives. In the studies by many scholors so far, the accurate and perfect methods to eliminate it completely are not found yet owing to many affected factors. On this view point of Depositional Wear, the wear test with seven different specimens from the part of frequent usage of which are carbon steel, nickel, copper, aluminum, zinc, lead and tin was attempted to make clear the relation between the wear of different metals and their melting point, crystal structure, sliding speed, load and lattice factors. The results of this study are summerized as follows; 1) Worn amount of each metal is maximum when each metal is same quality. 2) The easier becomes the the formation of solid solution in the course of friction proceeding, the more it results in worn amount of each metal. 3) The samer is each metal in crystal structure as well as lattice factor, the more it results in worn amount of each metal. These results might be of use in designing machineries, selecting materials and operating machineries.

  • PDF