• Title/Summary/Keyword: open technique

Search Result 1,380, Processing Time 0.03 seconds

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

Studies in Biomechanical Properties on Brain-spinal Cord Response Mechanism by Human Posture Control Ability (자세조절능력에 따른 뇌-척수 신경 반응기전의 역학적 해석)

  • Yoo, Kyoung-Seok
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.6
    • /
    • pp.449-459
    • /
    • 2019
  • The purpose of this study is to identify how postural mechanics affects postural control on balance and stability by using frequency analysis technique from the kinematic data acquired during the one leg standing posture. For this purpose, the experimental group consisted of two groups, the normal group (n=6) and the national Gymnastics group (n=6). Displacement data of CoP were analyzed by frequency analysis of rambling (RM) and trembling (TR) by FFT signal processing. As a results, there was a significant difference in evaluating the stabilization index between the two groups with the eyes open and closed one leg stnading (p <.05). The cause of the difference was found to be the output of the maximum amplitude of RM (f1) and TR (f2) (p <.05). In particular, in the low frequency RM of 8-9 Hz, which is a natural frequency of signal wave involved in postural feedback feedback, the main frequency appeared to be performs the exercise mechanism of stable brain posture control. And in the high frequency TM of 120-135 Hz, it is considered that the adaptation of the reflective muscle response is minimized to minimize posture shaking. In conclusion, this study provides evidence for the intrinsic main frequencies according to the postural control ability which affects the CNS in one leg standing.

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.

High Performance Work System for Entertainment Business : An Analytic Network Process Approach (엔터테인먼트업의 고성과작업조직 : ANP 기법을 중심으로)

  • Kwon, Jung-Eon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to explore a significant HPWS(High Performance Work System) model for the entertainment industry. HPWS is one of the most studied themes for managing human resources as well as a set of practices to elicit employees' commitment to an organization. Recently, the entertainment industry is growing rapidly, but it is difficult for entertainment firms to retain a stable profit unlike the manufacturing industry. This is because the performance of entertainment business tends to rely heavily on the capabilities and synergy of human resources. In order to suggest a systematic way to manage these, this research identified an effective HPWS model for entertainment business and provides a competitive advantage to entertainment firms, using ANP(Analytic Network Process). ANP is a multicriteria decision making technique that allows dependences and feedbacks among decision elements in the hierarchical or network structures in a holistic manner. The pairwise comparison data that prioritized the criteria of HPWS was collected from 28 team leaders in entertainment firms. According to our results, the most critical factor for HPWS in entertainment business is "employee involvement in decision-making." The sub-factors such as "open communication," "distributive decision-making," and "performance-driven reward" have a greater effect. These findings could provide implications for entertainment firms to determine which practices should be taken into account to accomplish HPWS.

Comparative Analysis of Callus Induction and Plant Regeneration Rates Using One-step and Two-step Cultures for Rice Anther Cultivation (벼 약배양 1단계 및 2단계 배양을 이용한 캘러스 유도 및 식물 재부화율 비교 분석)

  • Park, Young-hie
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.385-388
    • /
    • 2021
  • Anther cultivation for crop breeding is a method of rapid production of homozygosities by greatly reducing the time required for at least six generations to develop new varieties using conventional breeding methods. This technique of producing anther culture provides an opportunity to obtain more green plants from a methodological point of view, and the techniques that save time and effort in anther culture are also important because they increase the efficiency of culture. This study compared the callus induction rate and green plant regeneration rate of a one-step and a two-step culture that differ in their culture media and culture methods. One-step culture allows callus induction and plant regeneration in one medium, whereas two-step culture requires induction and plant regeneration in two different media. In this study, we compared the callus induction and plant regeneration rates of rice anthers as one-step and two-step cultures. The callus formation rate was 13.0% for one-step cultures and 8.6% for two-step cultures, so the rate was 4.4% higher for one-step cultures than for two-step cultures. The plant regeneration rate was 1.0% in one-step cultures and 3.0% in two-step cultures, so the regeneration rate was three times higher for the two-step cultures than for one-step cultures. This suggests that the two-step cultures are more efficient than the one-step cultures for haploid production.

Prioritizing Themes Using a Delphi Survey on Patient Safety Theme Reports (환자안전 주제별 보고서의 주제 우선순위 설정: 델파이 조사를 통한 분석)

  • Park, Jeong Yun;Shin, Eun-Jung;Kim, Rhieun;Kim, Sukyeong;Park, Choon-Seon;Park, Taezoon;Choi, Yun-Kyoung;Heo, Young-Hee
    • Quality Improvement in Health Care
    • /
    • v.28 no.1
    • /
    • pp.45-54
    • /
    • 2022
  • Purpose: The study aims to identify the theme list and priority criteria of patient safety theme reports in South Korea. Methods: The survey was conducted twice, and the importance of each criterion and theme was measured on a nine-point scale using the Delphi technique by a panel of 19 patient safety experts. The criteria included severity, universality, preventability, and organizational-social impact. Descriptive statistics such as frequency, percentage, mean, standard deviation, median, and interval quartile range were used to analyze the data. Results: The parameters were assigned a weighted average of 35% for severity, 20% for universality, 30% for preventability, and 15% for organizational-social impact, respectively. The final top three rankings were surgery safety, blood transfusion safety, and medication safety. In addition to expert opinion, for the theme that is selected based on the priority ranking, one to five sub-topics can be derived from the theme based on the priority ranking, societal demands, or the yearly priority list of patient safety incidents. Conclusion: It is recommended that the official patient safety center distribute the report in the form of a summary that can be utilized nationwide at medical institutions, government institutions, and other places. Updates, as well as accumulated theme reports, will serve as the baseline data for the proposal of the system and for the policy designed to implement and improve institutions' safety practices as a standard of domestic patient safety practice guidelines.

Vehicle Detection and Ship Stability Calculation using Image Processing Technique (영상처리기법을 활용한 차량 검출 및 선박복원성 계산)

  • Kim, Deug-Bong;Heo, Jun-Hyeog;Kim, Ga-Lam;Seo, Chang-Beom;Lee, Woo-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1044-1050
    • /
    • 2021
  • After the occurrence of several passenger ship accidents in Korea, various systems are being developed for passenger ship safety management. A total of 162 passenger ships operate along the coast of Korea, of which 105 (65 %) are car-ferries with open vehicle decks. The car-ferry has a navigation pattern that passes through 2 to 4 islands. Safety inspections at the departure point(home port) are carried out by the crew, the operation supervisor of the operation management office, and the maritime safety supervisor. In some cases, self-inspections are carried out for safety inspections at layovers. As with any system, there are institutional and practical limitations. To this end, this study was conducted to suggest a method of detecting a vehicle using image processing and linking it to the calculations for ship stability. For vehicle detection, a method using a difference image and one using machine learning were used. However, a limitation was observed in these methods that the vehicle could not be identified due to strong background lighting from the pier and the ship in the cases where the camera was backlit such as during sunset or at night. It appears necessary to secure sufficient image data and upgrade the program for stable image processing.

A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data (드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구)

  • Chan-hwi, Shin;Gyeong-jo, Min;Gyeong-Gyu, Kim;PuReun, Jeon;Hoon, Park;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.15-26
    • /
    • 2022
  • With the recent increase in old and dangerous buildings, the demand for technology in the field of structure demolition is rapidly increasing. In particular, in the case of structures with severe deformation of damage, there is a risk of deterioration in stability and disaster due to changes in the load distribution characteristics in the structure, so rapid structure demolition technology that can be efficiently dismantled in a short period of time is drawing attention. However, structural deformation such as unauthorized extension or illegal remodeling occurs frequently in many old structures, which is not reflected in structural information such as building drawings, and acts as an obstacle in the demolition design process. In this study, as an effective way to overcome the discrepancy between the structural information of old structures and the actual structure, access to actual structures through 3D modeling was considered. 3D point cloud data inside and outside the building were obtained through LiDAR and drone photography for buildings scheduled to be blasting demolition, and precision matching between the two spatial data groups was performed using an open-source based spatial information construction system. The 3D structure model was completed by importing point cloud data matched with 3D modeling software to create structural drawings for each layer and forming each member along the structure slab, pillar, beam, and ceiling boundary. In addition, the modeling technique proposed in this study was verified by comparing it with the actual measurement value for selected structure member.

Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay (수치모델을 이용한 진해만 내 소규모 내만의 해수교환율 비교)

  • Kim, Nam Su;Kang, Hoon;Kwon, Min-Sun;Jang, Hyo-Sang;Kim, Jong Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.74-85
    • /
    • 2016
  • For the assessment of seawater exchange rates in Danghangpo bay, Dangdong bay, Wonmun bay, Gohyunsung bay, and Masan bay, which are small-scale inner bays of Jinhae bay, an EFDC model was used to reproduce the seawater flow of the entire Jinhae bay, and Lagrange (particle tracking) and Euler (dye diffusion) model techniques were used to calculate the seawater exchange rates for each of the bays. The seawater exchange rate obtained using the particle tracking method was the highest, at 60.84%, in Danghangpo bay, and the lowest, at 30.50%, in Masan bay. The seawater exchange rate calculated based on the dye diffusion method was the highest, at 45.40%, in Danghangpo bay, and the lowest, at 34.65%, in Masan bay. The sweater exchange rate was found to be the highest in Danghangpo bay likely because of a high flow velocity owing to the narrow entrance of the bay; and in the case of particle tracking method, the morphological characteristics of the particles affected the results, since once the particles get out, it is difficult for them to get back in. Meanwhile, in the case of the Lagrange method, when the particles flow back in by the flood current after escaping the ebb current, they flow back in intact. However, when a dye flows back in after escaping the bay, it becomes diluted by the open sea water. Thus, the seawater exchange rate calculated based on the dye diffusion method turned out to be higher in general, and even if a comparison of the sweater exchange rates calculated through two methods was conducted under the same condition, the results were completely different. Thus, when assessing the seawater exchange rate, more reasonable results could be obtained by either combining the two methods or selecting a modeling technique after giving sufficiently consideration to the purpose of the study and the characteristics of the coastal area. Meanwhile, through a comparison of the degree of closure and seawater exchange rates calculated through Lagrange and Euler methods, it was found that the seawater exchange rate was higher for a higher degree of closure, regardless of the numerical model technique. Thus, it was deemed that the degree of closure would be inappropriate to be used as an index for the closeness of the bay, and some modifications as well as supplementary information would be necessary in this regard.

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.