• 제목/요약/키워드: open reading frame

검색결과 696건 처리시간 0.028초

해수에서 분리한 Photobacterium sp. Strain HA-2가 보유하는 요소분해효소 유전자의 유전적 특징 (Genetic Characterization of the Urease Gene Cluster in Photobacterium sp. Strain HA-2 Isolated from Seawater)

  • 김태옥;박권삼
    • 한국수산과학회지
    • /
    • 제48권5호
    • /
    • pp.639-643
    • /
    • 2015
  • In this study, we cloned and sequenced the 15,204-bp DNA region containing the gene cluster for urease production from the chromosome of the environmental Photobacterium sp. strain HA-2. We identified 15 open reading frames (ORFs) and the G+C content was 40.3%. The urease gene cluster of Photobacterium sp. strain HA-2 consisted of seven genes, namely, ureDABCEF and ureG. There were five ORFs of urease genes in the opposite direction, which were homologous to the nickel transport operons (nik) of Vibrio parahaemolyticus and Escherichia coli. The genetic organization and sequences of the urease genes of Photobacterium sp. strain HA-2 resembled those found in Vibrio fischeri and V. parahaemolyticus.

pncA 유전자의 염기 서열 결정에 의한 결핵균의 Pyrazinamide 내성 진단 (Detection of Pyrazinamide Resistance in Mycobacterium Tuberculosis by Sequencing of pncA Gene)

  • 황지윤;곽경록;박혜경;이지석;박삼석;김윤성;이정유;장철훈;이민기;박순규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제50권1호
    • /
    • pp.94-105
    • /
    • 2001
  • 연구배경 : Pyrazinamide(PZA)는 결핵의 1차 치료 약제이며, 산성 환경 하에서만 작용하기 때문에 in vitro에서 생물학적인 감수성 검사를 하는 것이 어렵다. pncA는 PZase를 생성하는 유전자로 이의 돌연변이가 결핵균의 PZase 활성을 소실시켜 결핵균이 PZA에 대해서 내성을 획득하게 되는 기전으로 추정된다. 본 연구에서는 PZA의 생물학적 감수성, PZase 활성 및 pncA 유전자의 돌연변이 사이의 관계를 검토하고, 아울러 결핵균의 pncA 의 염기서열 결정이 PZA 내성을 예측하는데 이용될 수 있는지를 알아보고자 하였다. 방법 : 폐결핵 환자의 객담에서 분리된 결핵균 28균주를 대상으로 하여, 절대농도법으로 PZA의 감수성을 검사하고, pncA 유전자의 open reading frame 전체 561 bp를 포함하는 710 bp 크기의 유전자를 선택적으로 증폭하였다. PCR 증폭 산물을 직접 염기서열 결정에 이용하였고, GenBank에서 확인한 결핵균 야생주의 pncA 염기서열과 비교하여 돌연변이 여부를 확인하였다. 결과 : PZase 활성이 있는 6균주 모두 pncA의 돌연변이가 없었으나, 1균주(16.7%)는 절대농도법에 의한 감수성 검사에서 위내성으로 나타났다. PZase 활성이 없는 22균주 중 21균주(95.5%)는 pncA의 돌연변이가 확인되었고, 생물학적 감수성 검사에서는 20균주가 PZA 내성, 1균주는 검사 불능, 1균주는 감수성을 보였다. pncA의 돌연변이의 양상(중복 1예 포함)은 promotor 지역과 pncA의 전 open reading frame에 걸쳐서 단일 염기의 치환에 의한 silent mutation 1개, missense mutation 10개, nonsense mutation 1개, 3염기가 삽입된 insertion 1개, 1~3개의 염기가 삽입된 frame shift mutation 4개, 그리고 2~2347개의 염기가 결실된 frame shift mutation 2개였다. 그리고 나머지 3균주는 모두 pncA유전자의 open reading frame 상부의 11번째 염기가 똑같이 adenine에서 guanine으로 치환되어 있었다. 결론 : pncA의 돌연변이는 결핵균의 PZase 활성의 소실에 의한 PZA 내성의 주요 기전이며, 특히 pncA 시작 codon의 상부 11 번째 위치의 염기 치환은 promotor의 돌연변이에 의한 PZA 내성의 주요 부위인 것으로 추정된다. Automatic sequencing에 의한 pncA의 염기서열 결정은 결핵균의 PZA 내성 진단을 위한 빠르고 효과적인 방법으로 이용할 수 있으며, PZA 내성 결핵균의 균주간 연관성을 규명하기 위한 역학 조사의 목적으로 이용할 수 있을 것으로 생각된다.

  • PDF

벼의 arginine decarboxylase DNA clone의 재조합 및 염기서열 분석 (Molecular Cloning and Nucleotide Sequencing of a DNA Clone Encoding Arginine Decarboxylase in Rice (Oryza sativa L.))

  • 홍성희;정지웅;옥승한;신정섭
    • Applied Biological Chemistry
    • /
    • 제39권2호
    • /
    • pp.112-117
    • /
    • 1996
  • ADC는 diamine인 putrescine 생합성의 두가지 경로중에서 식물계에서 특히 중요한 효소이며, ADC 유전자는 E. coli, 귀리, 토마토 genome에서 이미 cloning된 바 있다. 벼 (Oryza sativa L.) 게놈 DNA의 PCR 증폭을 위해서 토마토와 E. coli의 ABC cDNA의 보존된 부분과 일치하는 두개의 degenerate oligonucleotides (17mer)를 인위 합성하였으며, 증폭의 결과 약 1 kbp 크기의 DNA가 관찰되었다. 증폭된 DNA 절편은 1,022bp 염기서열을 포함하고 있는 ORE (open reading frame)으로 확인되었다. 이 PCR product는 POEM-originated T vector에 재조합하였으며 PstI 제한효소로 약 500bp 크기로 절단하여 pGEM-3Zf(+/-) vector에 subcloning하였다. 벼 ADC clone의 염기서열은 귀리와 토마토 ADC cDNA 서열의 같은 부분과 각각 74%와 70%의 동질성을 갖는 것으로 나타났으며, 예상되는 아미노산 서열은 귀리와 토마토 ADC 단백질과 각각 45%와 62%의 동질성이 관찰되었다. 귀리와 E. coli, 토마토와 귀리 그리고 토마토와 E. coli ADC 아미노산 서열에서 각각 34%, 47%, 그리고 38%의 유사성 정도가 보고된 것을 비교하여 볼 때, 벼와 귀리 및 토마토 사이의 유사성 정도는 다른 비교 보다도 월등히 높았다. 벼 유묘기 잎조직에서 추출한 RNA를 이용한 Northern blot 분석에서 ADC는 약 2.5kbp의 전사체로 발현됨이 확인되었다.

  • PDF

Bacillus subtilis를 이용한 대두 발효식품의 혈전용해능

  • 정영기
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2001년도 제32회 학술심포지움
    • /
    • pp.67-86
    • /
    • 2001
  • A strain producing strongly fibrinolytic enzyme was isolated from soil and was identified to be Bacillus subtilis by biochemical and physiological characterization. The optimal culture conditions for the production of fibrinolytic enzyme was determined to be 1.0% tryptone, 1.5% soluble starch, 0.5% Peptone, 0.5% NaCl, $(NH_{4})_{3}PO_4.3H_{2}O, and MgSO_{4}.7H_{2}O.$ Initial pH and temperature were pH 8.0 and $30^{\circ}C$ , respectively, The highest enzyme production was observed at 30 hours of cultivation at $30^{\circ}C$ The fibrinolytic enzyme was purified to homogeneity by DEAE Sephadex A-50 ion exchange column chromatography, 70% ammonium sulfate precipitation, Sephadex G-200 and G-75 gel filtration column chromatography. The molecular weight of the purified enzyme was 28,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A gene encoding the fibrinolytic enzyme was cloned into a plasmid vector pBluescript, transforming E.coli XL-1 Blue. The clone was able to degrade fibrin, This indicated that the gene could encode a fibrinolytic enzyme. The nucleotide sequence of the 2.7 kb insert was determined in both direction. One open reading frame composed of 1023 nucleotides was found to be a potential protein coding region. There was the putative Shine-Dalgano sequence and TATA box upstream of the open reading frame. The homology search data in the genome database showed that both the 2.7 kb insert and 1 kb open reading frame carried no significance in the nucleotide sequence of known fibrinolytic enzyme from Bacillus serovars. The recombinant cell harboring the novel gene involved in fibrinolysis was subjected to protein purification. The molecular mass of the purified fibrinolytic enzyme was determined to be 31864 Dalton, which was highly in accordance with the molecular mass(33 kDa) of the fibrinolytic gene deduced from the insert. The fibrinolytic enzyme was Purified 50.5 folds to homogeneity in overall yield of 10.7% by DEAE Sephadex A-50 ion exchange, 85% ammonium sulfate precipitation, Sephadex G-50, Superdex 75 HR FPLC gel filtration. In conclusion, a novel fibrinolytic gene from Bacillus subtilis was identified and characterized by cloning a genomic library of Bacillus subtilis into pBleuscript. For the soybean fermented by this strain, it is found that there increased assistant protein about 20% compared to the soybean not fermented and increased about 30% according to amino acid analysis and, in particular, essential amino acid increased about 40%. When keeping this fermented soybean powder at room temperature for about 70days, it showed very high stability maintaining almost perfect activity and, therefore, it gave us great suggestion its possibility of development as a new functional food.

  • PDF

Structural Characterization of the Genome of BERV γ4 the Most Abundant Endogenous Retrovirus Family in Cattle

  • Xiao, Rui;Park, Kwangha;Oh, Younshin;Kim, Jinhoi;Park, Chankyu
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.404-408
    • /
    • 2008
  • The genome of replication-competent BERV ${\gamma}4$ provirus, which is the most abundant ERV family in the bovine genome, was characterized in detail. The BERV ${\gamma}4$ genome showed that BERV ${\gamma}4$ harbors 8576 nucleotides and has the typical 5'-long terminal repeat (LTR)-gag-pro-pol-env-LTR-3' retroviral organization with a long leader region positioned before the gag open reading frame. Multiple sequences analysis showed that the nucleotide difference between 5' and 3' LTRs was 4.2% (mean value 0.042) in average, suggesting that the provirus formed at most 13.3 million years ago. Gag separated by a stop codon from pro-pol in the same reading frame, while env resides in another reading frame lacking of a functional surface domain. According to the current bovine genome sequence assembly, the full-length BERV ${\gamma}4$ provirus sequences were only found in the chromosomes 1, 2, 6, 10, 15, 23, 26, 28, X, and unassigned, although the partial sequences almost evenly distributed in the entire bovine genome. This is the first detailed study describing the genome structure of BERV ${\gamma}4$, the most abundant ERV family present in bovine genome. Combined with our recent reports on characterization of ERVs in bovine, this study will contribute to illuminate ERVs in the cattle of which no information was previously available.

Cloning, Sequencing and Expression Analysis of Porcine Uroplakin II Gene

  • Gwon Deuk-Nam;Kim Jin-Hoe
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.90-90
    • /
    • 2002
  • In this study, we report the cloning of the porcine UPII genomic DNA, which contains a putative full-length open reading frame encoding the UPII protein. A comparison of the porcine UPII gene coding sequence with the previously published mouse UPII sequence demonstrates that only the exon sequences are partially conserved. Northern and immunohistochemical analyses show that the porcine UPII gene is expressed only in the urothelium and that the protein specifically localizes to urothelial superficial cells. (omitted)

  • PDF

Trans-acting regulation and Arsenite sensing properties of ars operon

  • Lee, Soo-Chan;Lee, Sung-Jae;Lee, Ho-Sa
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2001년도 춘계심포지움 및 학술발표회
    • /
    • pp.141-141
    • /
    • 2001
  • The arsenic resistance operon from pMH12 in Klebsiella oxytoca contains two regulatory genes. The first open reading frame for arsR extend up to 348 bp and has a translational product corresponding to a protein of 116 amino acid residue polypeptide with a molecular mass of 13 kDa. And the second ORF for arsD extend up to 360 bp and express a protein of 120 amino anid residue polypeptide with 13kDa. (omitted)

  • PDF

Characterization of the recombinant cellulase A from Thermotoga maritima

  • Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.213-216
    • /
    • 2021
  • A gene encoding thermostable cellulase A (TmCelA) was isolated from Thermotoga maritima. The open reading frame of TmCelA gene was 774 bp long which predicted to encode 257 amino acid residues with a molecular weight of 29,732 Da. To examine the biochemical properties, the TmCelA was overexpressed in E. coli BL21, and expressed protein was purified. The optimum temperature of recombinant TmCelA was 90-95 ℃, and the optimum pH of recombinant TmCelA was approximately pH 5.0. Recombinant TmCelA was stable at temperature below 90 ℃.

Interaction between host cell proteins and open reading frames of porcine circovirus type 2

  • Si-Won Park;In-Byung Park;Seok-Jin Kang;Joonbeom Bae;Taehoon Chun
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.698-719
    • /
    • 2023
  • Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.

Flooding Stress-Induced Glycine-Rich RNA-Binding Protein from Nicotiana tabacum

  • Lee, Mi-Ok;Kim, Keun Pill;Kim, Byung-gee;Hahn, Ji-Sook;Hong, Choo Bong
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.47-54
    • /
    • 2009
  • A cDNA clone for a transcript preferentially expressed during an early phase of flooding was isolated from Nicotiana tabacum. Nucleotide sequencing of the cDNA clone identified an open reading frame that has high homology to the previously reported glycine-rich RNA-binding proteins. The open reading frame consists of 157 amino acids with an N-terminal RNA-recognition motif and a C-terminal glycine-rich domain, and thus the cDNA clone was designated as Nicotiana tabaccum glycine-rich RNA-binding protein-1 (NtGRP1). Expression of NtGRP1 was upregulated under flooding stress and also increased, but at much lower levels, under conditions of cold, drought, heat, high salt content, and abscisic acid treatment. RNA homopolymer-binding assay showed that NtGRP1 binds to all the RNA homopolymers tested with a higher affinity to poly r(G) and poly r(A) than to poly r(U) and poly r(C). Nucleic acid-binding assays showed that NtGRP1 binds to ssDNA, dsDNA, and mRNA. NtGRP1 suppressed expression of the fire luciferase gene in vitro, and the suppression of luciferase gene expression could be rescued by addition of oligonucleotides. Collectively, the data suggest NtGRP1 as a negative modulator of gene expression by binding to DNA or RNA in bulk that could be advantageous for plants in a stress condition like flooding.