• 제목/요약/키워드: open reactor

검색결과 135건 처리시간 0.024초

자속구속리액터의 철심조건에 따른 특성 (Characteristics under the Iron Core Conditions of the Flux-lock Reactor)

  • 이나영;최효상;박형민;조용선;남긍현;한태희;임성훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.875-876
    • /
    • 2006
  • Superconducting fault currents(SFCLs) are expected to improve not only reliability but also stability of power systems. The analysis on current limiting operations of the flux-lock type SFCL, which consists of a flux-lock reactor wound an iron core and a YBCO thin film, was compared the open-loop with the closed-loop iron core of the subtractive polarity winding. In the SFCL, operation characteristics could be controlled by adjusting the inductances and the winding directions of the coils, then magnetic field induced in the iron core. The current limiting characteristics under the same experimental conditions were generated regardless of the iron core conditions. We confirmed that capacity of the SFCL was increased effectively by the closed-loop iron core. However, the power burden of the system could be lowered by the open-loop iron core.

  • PDF

축소 APR+ 원자로 모형에서의 내부유동분포 수치해석 (Numerical Analysis of Internal Flow Distribution in Scale-Down APR+)

  • 이공희;방영석;우승웅;김도형;강민구
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.855-862
    • /
    • 2013
  • 개방 노심 열적여유도 해석 코드에 입력으로 제공되는 APR+ (Advanced Power Reactor Plus)의 수력학적 특징을 결정하기 위해 일련의 1/5 축소 원자로 유동분포 시험이 수행되었다. 본 연구에서는 원자로 내부 유동 계산시 다공성 모델을 사용한 전산유체역학의 적용성을 평가하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX V.14를 사용하여 계산을 수행하였다. 결론적으로 본 연구에서 사용한 일부 원자로 내부 구조물에 대한 다공성 영역 처리방식을 통해 원자로 내부의 유동 특성을 정성적으로 적절히 파악할 수 있을 것으로 판단된다. 만일 충분한 계산 자원이 확보된 조건인 경우라면 노심 입구 상류에 위치한 원자로 내부 구조물의 실제 기하 형상을 고려함으로써 노심 입구 유량분포를 보다 정확하게 예측할 수 있을 것으로 예상된다.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

OVERVIEW ON HYDROGEN RISK RESEARCH AND DEVELOPMENT ACTIVITIES: METHODOLOGY AND OPEN ISSUES

  • BENTAIB, AHMED;MEYNET, NICOLAS;BLEYER, ALEXANDRE
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.26-32
    • /
    • 2015
  • During the course of a severe accident in a light water nuclear reactor, large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen ($H_2$) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed, hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard, most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that, despite the installation of PARs, it is difficult to prevent at all times and locations, the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de $S{\hat{u}}ret{\acute{e}}$ $Nucl{\acute{e}}aire$ to assess hydrogen risk in nuclear power plants, in particular French nuclear power plants, the open issues, and the ongoing R&D programs related to hydrogen distribution, mitigation, and combustion.

Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors

  • Bhattacharjee, Meenakshi;Siemann, Evan
    • ALGAE
    • /
    • 제30권1호
    • /
    • pp.67-79
    • /
    • 2015
  • Planktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week experiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to $0.9T\;ha^{-1}y^{-1}$). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monocultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

핵연료조사리그 냉각수 유동 모의장치 개발 (Development of Coolant Flow Simulation System for Nuclear Fuel Test Rigs)

  • 홍진태;정창용;허성호;김가혜
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.117-123
    • /
    • 2015
  • 핵연료 연소시험 도중 핵연료봉에서 발생하는 열을 효과적으로 제거하기 위해서는 핵연료의 발열량을 정확하게 계산하고 충분한 유속을 갖는 냉각수를 순환시켜야 한다. 하나로는 개방형 수조 형태로서 핵연료 연소시험을 위한 별도의 냉각수 순환 루프를 갖추고 있는데, 여기에 핵연료 조사리그를 장착하고 냉각수를 순환시킴으로써 조사중인 핵연료봉의 온도를 일정온도 이하로 유지시킨다. 특히 순환되는 냉각수의 유속이 매우 높은 상태에서 조사리그 내에 부착된 부품이나 센서들이 유체유발 진동에 의해 파손되거나 기능을 상실하는 경우 매우 큰 기회비용을 야기한다. 본 연구에서는 조사리그 부품의 건전성 사전 검토 및 고속 유동에서의 센서 동작 특성에 대한 사전검토를 위해 냉각수 모의 순환장치를 개발하였다.

메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성 (High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake)

  • 박수인;전준범;배효관
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.

에너지$\cdot$환경 제반 시스템에 관한 수치 해석적 연구 (Ⅰ) : LPG 확산, 호소 유동, 일차침전조, 국소 환기용 후두, 싸이클론 연소로, Dow 화학 반응로 (A Numerical Study On Various Energy and Environmental Systems(Ⅰ) : LPG dispersion, Lake flow, Primary clarifier, Hood ventilation, Cyclone combustor, Dow chlorination reactor.)

  • 장동순;김경미;이은주;박병수;김복순
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.93-108
    • /
    • 1997
  • This paper describes several computational results on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, buoyancy-driven flow in a lake, primary clarifier for water and waste water treatment, hood ventilation in workplace. cyclone combustor and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or RNG κ-ε models. A nonequilibrium turbulent reaction model is developed for the application of the chlorination process in the Dow thermal reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal operating condition of various environmental engineering system of interest.

  • PDF

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • 제11권4호
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.