Purpose: Dimensions of body RF coil composed of 4 rectangular loops for low field open MRI hav been optimized. The design result shows the field inhomogeneity of B1 field below 1.5 dB in the 25 cm DSV can be achieved. Method: Our low field RF coil is composed of 4 rectangular strip loops that assumed to b located at both the bottom and top sides of permanent magnet. All the loops have identica dimensions and current amplitude. First, the inductance of a loop is calculated. Second, the current distribution on the coil strip is calculated by using finite difference time doma method (FDTD). It takes as much as 4 days in FDTD simulation for low frequency RF field That's why the electrical dipole radiation method is used for simulation. With the curren distribution obtained using the FDTD simulation, for various dimensional parameters th magnetic field has been calculated by electric dipole radiation method, where the curren elements are regarded as electric dipole radiation sources. The field pattern from electri dipole radiation is almost same as that from FDTD simulation. Also, it is same as that fro the result using the Viot-Savart equation, for far tone radiation term becomes zero and th Bl field amplitude of near one radiation is the same as the B field due to static current The field homogeneity is calculated in the 25 cm BSV.
Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.
Electron contamination due to the interaction between radiation beam and material was analyzed for the factors such as source-skin distance (SSD), field size, tray characteristics and position of filter, which can affect the surface dose in Cobalt teletherapy. Surface dose in open beam was more influenced by SSD with increasing field size. Relative surface charge (RSC) increased with the use of tray (solid, circular hole, slotted), compared with open beam, which is thought to be due to increased electron contamination of the tray. To reduce the surface dose, 0.4mm thick Lipowitz metal filter was used. Compared with open beam, RSC decreased by 8.8%, 11.3%, 13.3%, 16.6%, 19.3% and 21.7% for the field size of $5{\times}5$, $10{\times}10$, $15{\times}15$, $20{\times}20$, $25{\times}25$ and $30{\times}30cm^2$, respectively. On the contrary, use of Lipowitz metal filter increased RSC at 60cm or less SSD. Surface dose was effectively reduced with Lpowitz metal filter placed right below solid tray in Cobalt teletherapy.
Purpose: The purpose of this study is to optimize the configuration of body RF coil composed of 4 planar subcoils for low field open MRI. Method: Our low field RE coil is composed of 4 subcoils assumed to be located at both the bottom and top sides of permanent magnet. Each subcoils has 3 main strips. The coil system has mirror inversion symmetry. First, the currents on the strips are obtained by inductance calculation and circuit analysis, Second, all the strips are divided into line strip elements across the strips, the self Inductances of line strip elements and the mutual inductances among the line strip elements are calculated, and current distributions of strip are obtained by circuit analysis, where each strip is considered as parallel combination of line strip elements. Finally all the line strip elements are segmented, magnetic field has been calculated by pseudo electric dipole radiation method, where the current elements are regarded as pseudo electric dipole radiation sources. We have performed above procedures for various configurations of RE coil. The field homogeneity is calculated in the 25 cm DSV.
The Monte Carlo (MC) method has become an indispensable part of the nuclear radiation research field. Several widely used and well-known MC packages were developed for simulation of radiation transport and interaction with matter. All these MC packages require users to prepare an input script. The input script can become lengthy for complex models. The process of preparing these input scripts is time-consuming and error-prone. In the present work, we have developed an open-source GUI computer program for modelling radiation transport and interaction in multi-segmented slab phantoms using grid-based system for the widely used PHITS MC package. The developed tools would be useful for future users of PHITS MC package and particularly inexperienced users. The present program is distributed under GPL license and all users can freely download, modify and redistribute the program without any restrictions.
In recent days, although many kinds of beam modifiers are developing and using for clinical purposes in accordance with progressing medical engineering, physical wedges are preferred to use as a beam modifier by a lot of institutions until now because of cost, complexities of dosimetry and mechanical uncertainties. According to progressing technology, available field size of wedge is more enlarger than that of old model LINAC. Because field size dependence of wedged fields increases in new model LINAC, we was trying to know that how much different PSFs are in enlarged wedged fields compared with open fields. In small or middle size of fields($4{\times}4{\sim}15{\times}15cm$), there are only a few percents of PSF variation between open and wedged fields. But there are $2{\sim}8\%\;variations\;in\;relatively\;large\;fields(20{\times}20{\sim}30{\times}40cm)$.
종양부위의 입체적이고 선택적인 치료가 가능해 임상표적부피(clinical target vlume, CTV)에 높은 선량으로 집중조사하고 부작용을 현저히 줄이는 세기조절방사선치료는 치료예후를 향상시키고 있다. 방사선세기조절 치료는 MLC의 개방면적과 개방시간으로 조사면내 플루언스를 조정하므로 소형조사면의 선량이 누적되어 원하는 선량이 조사하게 된다. 따라서 소형조사면과 계층형 조사면의 출력선량계수의 정확성은 곧 Portal MU 결정에 정확성을 더할 수 있고, 종양에 조사되는 선량의 정확성을 향상할 수 있으므로, 이 연구는 Clinac Ex (Varian) $3{\times}3cm^2$에서 $0.5{\times}0.5cm^2$까지 조사면을 선정하였고 방사선은 6 MVX선의 소형조사면의 출력선량계수를 평가하였다. 조사면은 다엽제한기를 $40{\times}40cm^2$로 개방하고 Collimator jaw를 이용한 것과 Collimator를 $10{\times}10cm^2$로 고정하고 다엽제한기에 의한 조사면으로 구분하여 출력선량계수가 결정되었다. 검출기는 유효체적이 $0.01cm^3$이고 내경 2 mm인 CC01 (Scanditronix-Wellope)이온전리함과 SFD 다이오드 검출기(0.6 mmØ, $500{\mu}m$ 두께, Scanditronix-Wellope)와 다이아몬드 검출기(T60003, PTW)와 X-Omat film을 사용하였다. 결과는 다엽제한기 조사면의 출력선량계수는 $3{\times}3cm^2$에서 $0.899{\pm}0.0106$, $2{\times}2cm^2$에서 $0.855{\pm}0.0106$, $1{\times}1cm^2$에서 $0.764{\pm}0.0082$, $0.5{\times}0.5cm^2$에서 $0.602{\pm}0.0399$를 얻었다. Jaw를 $10{\times}10cm^2$로 고정하고 다엽제한기의 조사면의 출력계수는 MLC를 $40{\times}40cm^2$에 jaw에 의한 소형조사면의 것보다 최대 3.8% 높게 나타남을 확인하였다. 따라서 세기조절방사선치료 TPS에는 collimator jaw 보다 다엽제한기 조사면 크기의 출력선량계수가 설정되는 것이 중요함을 의미한다.
목 적 : 유방암 치료에 있어 피부선량의 측정은 매우 중요하다. 치료계획시에는 처방선량에 비해 초과선량이나 부족선량이 생길 수 있으므로 이에 대한 유방암의 여러 가지 치료계획간 피부선량 평가가 필요하다. 이에 대해 본원에서는 다양한 선량계를 이용하여 선량을 분석하여 유방암치료에 적용하고자 한다. 대상 및 방법 : 유방암은 기본적으로 접선방향 치료계획 시 일어나는 skin dose(Drain site, Scar)의 선량차이를 알아보기 위하여 인체모형팬텀을 이용하였다. 인체모형팬텀을 전산화단층촬영하고 전산화치료계획에서 open과 쐐기필터(Wedge filter)를 이용한 치료계획, Field-in-Field를 이용한 치료계획, 그리고 Dose fluence를 이용한 Irregular compensation 치료계획을 세우고 컴퓨터치료계획 프로그램(Eclipse)으로 선량관심점과 측정점의 선량을 비교하였다. 치료실에서 인체모형팬텀을 위치시키고 선량비교를 위하여 각 치료계획 측정점에 열형광선량계(themoluminesence dosimeter, TLD)와 MOSFET(Metal oxide-silicon field effect transistor)을 이용하여 선량을 측정하여 비교평가 하였다. 결 과 : 피부선량은 치료계획 중심점을 기준으로 위와 아래는 Dose fluence를 이용한 Irregular compensation 치료계획 사용 시 MOSFET을 이용한 선량측정에서 가장 많은 선량이 들어가는 것으로 나타났다. 내측과 외측의 측정선량은 open과 쐐기필터 치료계획에서 TLD와 MOSFET을 이용하여 측정시 5.7%에서 10.3%까지 낮게 나타났다. 반대쪽 유방의 선량은 open 치료계획이 가장 적었고, Dose fluence를 이용한 Irregular compensation 치료계획을 사용 시 가장 많은 선량이 측정되었다. 치료종별 치료계획상에서는 내측과 외측의 선량편차가 가장 컸으며, TLD와 MOSFET 측정시에도 같은 경향을 보였다. 외측은 TLD, 내측은 MOSFET이 가장 편차가 컸다. 결 론 : 치료계획에 따른 피부선량은 전반적으로 Dose fluence를 이용한 Irregular compensation의 치료계획을 사용 시 가장 많이 들어가는 것으로 나타났으며, 이는 많은 MLC의 움직임에 의한 산란선 영향으로 생각된다. 모든 치료계획에서 피부의 위치에 따라 약간의 차이는 있으나 부족선량이 생기는 부분에서는 내측의 내유임파절(Intramammary lymph nodes)선량이나 Scar, Drain site등에서 세심한 주의가 필요하다. 부족선량을 높이기위해서는 Dose fluence를 이용한 Irregular compensation의 치료계획을 사용하는 것이 좋겠으나, 전체적인 선량을 높이기보다는 선택적인 범위내에서 선량을 높이게 되므로 환자의 연령이나 움짐임 등을 고려하여 치료기술을 선택하는 것이 바람직할 것으로 사료된다.
목적 : 종속조사면 병합 치료방법(FIF : Field In Field)을 이용한 유방절선조사 시 반대편 유방의 표면선량을 평가하고자 한다. 대상 및 방법 : FIF치료방법 이용 시 반대편 유방에 흡수되는 표면선량을 평가하고자 동일한 기하학적 조건과 처방선량을 기반으로 열린조사면(Open), 금속쐐기(MW : Metal Wedge), 동적쐐기(EDW : Enhanced Dynamic Wedge)를 이용한 조사방법과 비교하였다. 3차원 치료계획장치를 이용하여 선량분포 최적화를 수행하였으며 계산 결과의 정확도를 검증하기 위해 인체 팬톰과 모스펫 측정기를 사용하여 측정을 수행하였다. 동측 유방 입사면 가장자리로부터 반대편 유방 쪽으로 2, 4, 6, 8, 10cm 지점을 선정하여 각각 표면(0cm : 가피)과 0.5cm(진피) 깊이에서 선량을 측정하였으며, 0.5cm 깊이 선량측정을 위해서 0.5cm 볼루스를 사용하였다. 선량분포의 계산은 불균질 물질을 보정(modified Batho method)하여 0.25cm 격자 해상도로 수행하였다. 결과 : 치료계획장치에서 각 지점의 평균표면선량은 금속쐐기의 경우 표면 및 0.5cm 깊이에서 $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ 증가했고, 동적쐐기는 $1.0{\sim}7.9%$, $1.6{\sim}37.4%$까지 증가하였다. FIF는 $-18.4{\sim}0.7%$, $-8.1{\sim}4.7%$까지 선량이 변화하였다. MOSFET을 이용하여 측정한 경우는 금속쐐기는 표면 및 0.5cm 깊이의 경우 $11.1{\sim}71%$, $22.9{\sim}161.2%$ 증가했고, 동적쐐기는 $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ 선량이 증가했다. FIF는 표면에서 $-15.7{\sim}-4.9%$로 선량이 오히려 감소했으며, 0.5cm 깊이에서의 선량도 $-10.5{\sim}3.6%$로 나타났다. 치료계획장치의 계산값과 실측값을 비교한 결과, 유사한 경향을 보였으나 치료계획장치의 경우 피부선량이 실제측정값보다 다소 과소평가되고 있음을 알 수 있었다. 결론 : 본 실험을 통해 FIF치료방법의 경우 기존 치료방법(MW, EDW)에 비해 치료표적에 최적화 된 선량 분포를 만들어 내면서도 반대편 유방의 피부에 불필요한 산란선량을 최소화하는 치료방법임을 알 수 있었다.
목 적 : 본 연구에서는 기존의 방사선 치료 기법인 3D-CRT 방법을 기반으로 치료 Energy와 Wedge를 변형 시킨 Hybrid 치료계획을 세워, open rectangular field를 사용한 2D-RT와 현재 가장 많이 시행되고 있는 방사선치료의 형태인 3D-CRT, 그리고 Hyrid paln 의 각각의 치료계획에 따른 선량분포, 선량-체적 히스토그램을 이용하여 산출된 값들을 비교, 분석하여 Hybrid 치료계획의 유용성을 평가하고자 한다. 대상 및 방법 : 본원에서 방사선 치료를 받은 환자 5명을 대상으로 전산화 단층촬영장치(RT-16GE)를 이용해 CT모의치료를 시행하여 영상을 획득하였다. 치료계획실에서는 이미지 관심영역표시는 종양은 CTV으로, 정상장기는 폐, 심장으로 나타냈다. 치료계획은(pinncle-ver 9.2)은 표적에는 충분한 선량을 정상장기에는 선량이 최소화 되도록 치료계획을 세웠다. 결 과 : Homogeneity Index의 선량비교는 2D-RT (open rectangular field): 38.32, TW(conformal wedge field): 32.01 FIF(field in field): 29.22, HYBRID(energy combine, wedge combine): 30.57으로 나타났다. 2D-RT, TW, FIF Hybrid $V_{75_-lung}$은 각각 112.33, 125.14, 121.3, 123.78. $V_{50_-lung}$은 155.43, 159.62, 157.96, 159.06. $V_{25_-lung}$은 199.86, 200.22, 198.65, 200.31. $V_{50_-heart}$는 각각 26.07, 27.1, 26.85, 27.17 $V_{30_-heart}$ 33.71, 34.37, 34.15, 34.65로 나타났다. 결 론 : HYBRID planning에서 표적에는 3D-CRT 에 비해 비교적 뛰어난 선량분포와 유방을 보호함을 보여주지만 폐와 심장에 많은 선량이 조사됨을 치료계획 시 주의해야 하고 앞으로 해결해야 할 과제라 생각된다. HYBRID 으로 Energy를 혼합하여 사용한다면, 타겟에 보다 더 적절한 coverage가 이루어질 수 있을 것으로 보인다. breast 뿐만 아닌 Lung cacner 치료와 같이 불균질한 부위의 치료에 적용한다면 보다 더 최적을 결과를 이루어낼 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.