• Title/Summary/Keyword: open fault

Search Result 266, Processing Time 0.027 seconds

Open Fault Diagnosis Method for Five-Phase Induction Motor Driving System (5상 유도전동기 구동 시스템을 위한 인버터의 개방고장진단 방법)

  • Baek, Seung-Koo;Shin, Hye-Ung;Kang, Seong-Yun;Park, Choon-Soo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.304-310
    • /
    • 2016
  • This paper proposes a fault diagnosis method for an open-fault in inverter driving five-phase induction motor. The five-phase induction motor has a high output torque and small torque ripple in comparison to three-phase. The best advantage of the five-phase induction motor is fault diagnosis and tolerant control using redundancy of phases. This paper uses an inverter as a power converter for driving a five-phase induction motor. If a switch of inverter occurs to the open-fault, this problem is the influence on the output current and output torque. To solve this problem, there is need of an accurate diagnosis and fault switch distinction. Therefore, this paper propose a fault detection method of the open-fault switches for the fault diagnosis. First, analyzing the pattern for the open-circuit fault of one phase. next, analyzing the pattern for the open-circuit fault of each inverter switches. Through the pattern analysis, It defines the scope of each of the failure switch. Thereafter, By using an algorithm that proposes to perform a fault diagnosis method. The proposed algorithm is verified from the experiment with the 1.5 kW five-phase induction motor.

Fault-Tolerant Strategy to Control a Reverse Matrix Converter for Open-Switch Faults in the Rectifier Stage

  • Lee, Eunsil;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • Reverse matrix converters, which can step up voltages, are suitable for applications with source voltages that are lower than load voltages, such as generator systems. Reverse matrix converter topologies are advantageous because they do not require additional components to conventional matrix converters. In this paper, a detection method and a post-fault modulation strategy to operate a converter as close as possible to its desired normal operation under the open-switch fault condition in the rectifier stage are proposed. An open-switch fault in the rectifier stage of a reverse matrix converter causes current distortions and voltage ripples in the system. Therefore, fault-tolerant control for open-switch faults is required to improve the reliability of a system. The proposed strategy determines the appropriate switching stages from among the remaining healthy switches of the converter. This is done based on reference currents or voltages. The performance of the proposed strategy is experimentally verified.

FPGA Based Robust Open Transistor Fault Diagnosis and Fault Tolerant Sliding Mode Control of Five-Phase PM Motor Drives

  • Salehifar, Mehdi;Arashloo, Ramin Salehi;Eguilaz, Manuel Moreno;Sala, Vicent
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.131-145
    • /
    • 2015
  • The voltage-source inverters (VSI) supplying a motor drive are prone to open transistor faults. To address this issue in fault-tolerant drives applicable to electric vehicles, a new open transistor fault diagnosis (FD) method is presented in this paper. According to the proposed method, in order to define the FD index, the phase angle of the converter output current is estimated by a simple trigonometric function. The proposed FD method is adaptable, simple, capable of detecting multiple open switch faults and robust to load operational variations. Keeping the FD in mind as a mandatory part of the fault tolerant control algorithm, the FD block is applied to a five-phase converter supplying a multiphase fault-tolerant PM motor drive with non-sinusoidal unbalanced current waveforms. To investigate the performance of the FD technique, the fault-tolerant sliding mode control (SMC) of a five-phase brushless direct current (BLDC) motor is developed in this paper with the embedded FD block. Once the theory is explained, experimental waveforms are obtained from a five-phase BLDC motor to show the effectiveness of the proposed FD method. The FD algorithm is implemented on a field programmable gate array (FPGA).

Development of fault diagnosis and tole-service technology for CNC implementation (CNC 실장 고장진단 및 원격 서비스 기술 개발)

  • 김동훈;김선호;김도연;윤원수;김찬봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.7-10
    • /
    • 2002
  • The diagnosis of faults of machine tool, which is controlled by CNC and PLC, is generally based on ladder diagram of PLC. Because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching for logical relation to fault reasons is required a lot of fault experiences and times, because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault lastly and correctly. The diagnosed reasons for fault are tele-serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

  • PDF

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

Investigation of Fault-Mode Behaviors of Matrix Converters

  • Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.949-959
    • /
    • 2009
  • This paper presents a systematic investigation of the fault-mode behaviors of matrix converter systems. Knowledge about converter behaviors after fault occurrence is important from the standpoint of reliable system design, protection and fault-tolerant control. Converter behaviors have been, in detail, examined with both qualitative and quantitative approaches for key fault types, such as switch open-circuited faults and switch short-circuited faults. Investigating the fault-mode behaviors of matrix converters reveals that converter operation with switch short-circuited faults leads to overvoltage stresses as well as overcurrent stresses on other healthy switching components. On the other hand, switch open-circuited faults only result in overvoltage to other switching components. This study can be used to predict fault-mode converter behaviors and determine additional stresses on remaining power circuit components under fault-mode operations.

CNC Implemented Fault Diagnosis and Remote-Service System (CNC에 실장한 고장진단 및 원격 서비스 시스템)

  • 김선호;김동훈;김도연;박영우;윤원수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.89-97
    • /
    • 2003
  • The faults diagnosis of machine tool, which is controlled by CNC(Computer Numerical Control) and PLC(Programmable Logic Controller), is generally based on ladder diagram of PLC because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching of logical relationship for fault reasons is required a lot of diagnosis experiences and times because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault fast and correctly. The diagnosed reasons for fault are remote serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

Diagnosis Methods for IGBT Open Switch Fault Applied to 3-Phase AC/DC PWM Converter

  • Im, Won-Sang;Kim, Jang-Sik;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.120-127
    • /
    • 2012
  • Fault diagnosis technique of electrical drives is becoming more and more important, since voltage fed converter system has become industrial standard in many applications. Many studies have been conducted an inverter fault diagnosis for induction motors. However, there are few researches about fault diagnosis of 3-phase ac/dc PWM (Pulse Width Modulation) converter compared to the dc/ ac inverter. The ac/dc converter is the opposite of dc/ac inverter at current flow. Also, inverter and converter have different current patterns under the same condition of IGBT (Insulated gate bipolar transistor) open switch fault. Therefore, it is difficult to apply intact diagnosis methods of inverter to the converter. This paper proposes modified fault detection methods for IGBT open switch fault in 3-phase ac/dc PWM converter by modifying established fault diagnostic methods for dc/ac inverters.

Fault Diagnosis Scheme for Open-Phase Fault of Permanent Magnet Synchronous Motor Drive using Extended Kalman Filter (영구자석 동기전동기 드라이브의 확장형 칼만필터를 이용한 개방성 고장진단 기법)

  • Ahn, Sung-Guk;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2011
  • In this paper, the fault diagnosis scheme for PMSM drives has been proposed to maintain control performance under a switch open-phase fault of inverter. When the open-phase fault occurs, the stator resistances of PMSM are estimated by Extended Kalman Filter (EKF) in real time and can appear differently according to the location of fault occurrence to check the fault detection and identification. The control algorithm is configured without the additional device and low cost by adding the existing control program. Also, by using motor parameter the estimated stator resistance value improves the control performance of the controller affected by parameter variation. The feasibility of the proposed fault diagnosis algorithm is validated in simulation and experiment.

A Diagnosis Scheme of Switching Devices under Open Fault in Inverter-Fed Interior Permanent Magnet Synchronous Motor Drive (매입형 영구자석 동기전동기 구동용 인버터 스위칭 소자의 개방 고장 진단)

  • Choi, Dong-Uk;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2012
  • This paper deals with a fault diagnosis algorithm for open faults in the switching devices of PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive. The proposed diagnostic algorithm is realized in the controller using the informations of three-phase currents or reference line-to-line voltages, without requiring additional equipments for fault detection. Under switch open fault conditions, the conventional dq model used to control an AC motor cannot directly be applied for the analysis of drive system, since three-phase balanced condition does not hold. To overcome this limitation, a fault model based on the line-to-line voltages is employed for the simulation studies. For comparative performance evaluation through the experiments, the entire control system is implemented using digital signal processor (DSP) TMS320F28335. Simulations and experimental results are presented to verify the validity of the proposed diagnosis algorithm.