• Title/Summary/Keyword: open circuit potential

Search Result 207, Processing Time 0.024 seconds

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

Influence of surface morphology and thickness of molecular thin films on the performance of SubPc-$C_{60}$ photovoltaic devices

  • Kim, Jin-Hyun;Gong, Hye-Jin;Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.336-336
    • /
    • 2011
  • Over the past decades, organic semiconductors have been investigated intensely for their potential in a wide range of optoelectronic device applications since the organic materials have advantages for very light, flexible and low cost device fabrications. In this study, we fabricated small-molecule organic solar cells (OSCs) based on chloro[subphthalocyaninato]boron(III) (SubPc) as an electron donor and $C_{60}$ as an electron acceptor material. Recently SubPc, a cone-shaped molecule with $14{\pi}$-electrons in its aromatic system, has attracted growing attention in small-molecule OSC applications as an electron-donating material for its greater open-circuit voltage (VOC), extinction coefficient and dielectric constant compared to conventional planar metal phthalocyanines. In spite of the power conversion efficiency (PCE) enhancement of small-molecule OSC using SubPc and $C_{60}$, however, the study on the interface between donor-acceptor heterojunction of this system is limited. In this work, SubPc thin films at various thicknesses were deposited by organic molecular beam deposition (OMBD) and the evolution of surface morphology was observed using atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). We also investigated the influence of film thickness and surface morphology on the PCE of small-molecule OSC devices.

  • PDF

Characterization of Electrically Conductive Adhesives for Shingled Array Photovoltaic Cells (전도성 접착제 물성에 따른 슁글드 어레이 태양전지 특성 평가)

  • Jee, Hongsub;Choi, Wongyong;Lee, Jaehyeong;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.95-99
    • /
    • 2017
  • The interconnecting shingled solar cells method shows extremely high ratio active area per total area and has the excellent potential for high power PV (photovoltaic). Compared to the conventional module, it can have much more active area due to busbar-free structure. The properties of ECA (electrically conductive adhesives) are significant to fabricate the shingled array PV since it should be used in terms of electric and structural connection. Various ECA were tried and characterized to optimize the soldiering conditions. The open circuit voltage of shingled array cells showed a three-fold increase and efficiency was also increased by 1.63%. The shingled array cells used in CE3103WLV showed the highest power and in CA3556HF the lowest curing temperature and very fast curing time.

Study on the Effects of Oxidant on Chemical Passivation Treatment of Low Nickel Stainless Steel (저니켈 스테인리스강의 화학적 부동태막 형성에 산화제가 미치는 영향)

  • Choi, Jong-Beom;Lee, Kyung-Hwang;Yun, Yong-Sup
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.3
    • /
    • pp.172-178
    • /
    • 2018
  • In this paper, effects of potassium permanganate, pottasium dichromate, sodium molybdate on lean duplex stainless steel were studied by GDOES, OCP, potentiodynamic curves. The stainless steels were chemically passivated in each nitric acid solutions containing 4wt.% oxidants for 1 hour. As a result, when potassium dichromate or sodium molybdate was added, content of Fe was decreased and content of Cr was increased. Consequently, corrosion resistance of passive film was increased. But in case of potassium permanganate was added, contrastively, content of Fe was increased and content of Cr was decreased. So corrosion resistance was decreased. Adding sodium molybdate in nitric acid for chemical surface treatment process was the most effective among oxidants and also it showed the most stable anti-corrosion in SST.

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Investigation of Corrosion Characteristics with Zn, PTFE Hybrid Coating for SS400 in Sea Water (Zn, PTFE 복합 코팅에 의한 SS400 강의 해수 부식 특성 변화 연구)

  • Han, Min Su;Prak, Jae Cheul;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.205-211
    • /
    • 2011
  • The severe corrosion environment makes the steel product lifecycle short while Cu-alloys with anti-corrosion characteristic used in sea water are too expensive. This study shows that the Cu-alloy(Cu-37.25% Zn-0.67%Al) used in sea water environment can be superseded by SS400 with various coating process, evaluating electrochemical characteristics. Three coating processes were applied to SS400 such as PTFE + Zn coaing, Zn + PTFE coating and only Zn electrogalvanizing coaing. Various electrochemical experiments such as open circuit potential measurments, potentiodynamic polarization tests and analyses of Tafel constants. Mechanical properties were also measured by tensile test and hardness tests. As a result, Zn + PTFE coating for SS400 steel presented the excellent anti-corrosion characteristic in sea water.

Effect of Post-CMP Cleaning On Electrochemical Characteristics of Cu and Ti in Patterned Wafer

  • Noh, Kyung-Min;Kim, Eun-Kyung;Lee, Yong-Keun;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.174-178
    • /
    • 2009
  • The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium (Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as a function of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution. The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast with Cu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu and Ti increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu and Ti. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, the effect of Triton X-$100^{(R)}$, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics of the specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. In contrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-$100^{(R)}$ changes its micelle structure according to its concentration in the solution, the corrosion rate of each concentration was tested.

Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution (과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가)

  • Kim, Min-Jeong;Kim, Hyoung-Chan;Yoon, Seog-Young;Jung, Uoo-Chang
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.2
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

A Study on the Microfabricated Clark-type Sensor for Measuring Dissolved Oxygen (용존 산소 측정용 초소형 Clark-type 센서에 대한 연구)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young-Mi;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1450-1454
    • /
    • 2007
  • This paper presents a microfabricated Clark-type sensor which exactly can measure dissolved oxygen in the cell containing solution. We designed, fabricated, and characterized a microfabircated Clark-type oxygen sensor for measuring dissolved oxygen. The microfabricated oxygen sensor consists of 3-electrodes on a glass substrate, a FEP (Fluorinated ethylene propylene) oxygen-permeable membrane, and PDMS (Polydimethylsiloxane) reservoir for storing sample solution. Thin-film Ag/AgCl was employed as a reference electrode and its durability was verified by obtaining a stable open circuit potential for 2 hours against a commercial Ag/AgCl electrode and a stable cyclic voltammetry curve. Selectivity, response time, and linearity of the fabricated oxygen sensor were also verified well by cyclic voltammetry and amperometry depending. The fabricated oxygen sensor showed a 90% response time of 40sec and an excellent linearity with a correlation coefficient of 0.994.