• 제목/요약/키워드: oomycetes

검색결과 37건 처리시간 0.027초

Characterization of Achlya americana and A. bisexualis (Saprolegniales, Oomycota) Isolated from Freshwater Environments in Korea

  • Choi, Young-Joon;Lee, Seo Hee;Nguyen, Thuong T.T.;Nam, Bora;Lee, Hyang Burm
    • Mycobiology
    • /
    • 제47권2호
    • /
    • pp.135-142
    • /
    • 2019
  • Many members of the Saprolegniales (Oomycete) cause mycoses and disorders of fishes, of which Achlya and Saprolegnia are most ubiquitous genera worldwide. During a survey of the diversity of freshwater oomycetes in Korea, we collected seven isolates of Achlya, for which morphological and molecular phylogenetic analyses enabled them to identify as Achlya americana and Achlya bisexualis. In Korea, only a species of Achlya, A. prolifera, has been previously found to cause seedling rot on rice (Oryza sativa), but none of the two species have been reported yet. Importantly, A. bisexualis was isolated from a live fish, namely rice fish (Oryzias sinensis), as well as freshwater, and this is the first report of Achlya-causing mycoses on freshwater fishes in Korea. The presence of A. americana and A. bisexualis on live fish in Korea should be closely monitored, as considering the well-known broad infectivity of these species it has the potential to cause an important emerging disease on aquaculture industry.

Control of oomycete pathogens during Pyropia farming and processing using calcium propionate

  • Yong Tae Kim;Ro-won Kim;Eunyoung Shim;Hana Park;Tatyana A. Klochkova;Gwang Hoon Kim
    • ALGAE
    • /
    • 제38권1호
    • /
    • pp.71-80
    • /
    • 2023
  • The oomycete pathogens Pythium porphyrae, causing red rot disease, and Olpidiopsis spp. causing Olpidiopsis-blight, cause serious economic losses to Pyropia sea farms in Korea. During the washing step for Pyropia processing, these pathogens proliferate rapidly, significantly reducing the quality of the final product. To develop non-acidic treatments for these pathogens, various calcium salts were tested against the infectivity of P. porphyrae and Olpidiopsis pyropiae on Pyropia gametophytes, and calcium propionate was the most effective. When Pyropia blades were immersed in 10 mM calcium propionate for 1 h after inoculation with the oomycete pathogen, infection rate of both oomycete pathogens on day 2 was significantly lower (7.1%) than control (>95%). Brief incubation of Pyropia blades in calcium propionate also reduced the spread of infection. The infected area of Pyropia thallus was reduced to 14.3% of the control in 2 days after treatment with 100 mM calcium propionate for 30 s. In field experiments conducted in actual aquaculture farms, it has been shown that a brief 30 s wash every two weeks with 100 mM calcium propionate can effectively reduce the spread of oomycetes throughout the entire culture period. The above results suggest that calcium propionate can be a useful means for controlling the spread of oomycetes not only during laver processing but also during aquaculture.

Usability of DNA Sequence Data: from Taxonomy over Barcoding to Field Detection. A Case Study of Oomycete Pathogens

  • Choi, Young-Joon;Thines, Marco
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.41-41
    • /
    • 2015
  • Oomycetes belong to the kingdom Straminipila, a remarkably diverse group which includes brown algae and planktonic diatoms, although they have previously been classified under the kingdom Fungi. These organisms have evolved both saprophytic and pathogenic lifestyles, and more than 60% of the known species are pathogens on plants, the majority of which are classified into the order Peronosporales (includes downy mildews, Phytophthora, and Pythium). Recent phylogenetic investigations based on DNA sequences have revealed that the diversity of oomycetes has been largely underestimated. Although morphology is the most valuable criterion for their identification and diversity, morphological species identification is time-consuming and in some groups very difficult, especially for non-taxonomists. DNA barcoding is a fast and reliable tool for identification of species, enabling us to unravel the diversity and distribution of oomycetes. Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The mitochondrial cox2 gene has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. To determine which out of cox1 or cox2 is best suited as universal oomycete barcode, we compared these two genes in terms of (1) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (2) in terms of sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding type material. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. Including the two barcoding markers, ITS rDNA and cox2 mtDNA, the multi-locus phylogenetic analyses were performed to resolve two complex clades, Bremia lactucae (lettuce downy mildew) and Peronospora effuse (spinach downy mildew) at the species level and to infer evolutionary relationships within them. The approaches discriminated all currently accepted species and revealed several previously unrecognized lineages, which are specific to a host genus or species. The sequence polymorphisms were useful to develop a real-time quantitative PCR (qPCR) assay for detection of airborne inoculum of B. lactucae and P. effusa. Specificity tests revealed that the qPCR assay is specific for detection of each species. This assay is sensitive, enabling detection of very low levels of inoculum that may be present in the field. Early detection of the pathogen, coupled with knowledge of other factors that favor downy mildew outbreaks, may enable disease forecasting for judicious timing of fungicide applications.

  • PDF

Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers

  • Lee, Soon Jeong;Hwang, Mi Sook;Park, Myoung Ae;Baek, Jae Min;Ha, Dong-Soo;Lee, Jee Eun;Lee, Sang-Rae
    • ALGAE
    • /
    • 제30권3호
    • /
    • pp.217-222
    • /
    • 2015
  • Pythium species (Pythiales, Oomycetes) are well known as the algal pathogen that causes red rot disease in Pyropia / Porphyra species (Bangiales, Rhodophyta). Accurate species identification of the pathogen is important to finding a scientific solution for the disease and to clarify the host-parasite relationship. In Korea, only Pythium porphyrae has been reported from Pyropia species, with identifications based on culture and genetic analysis of the nuclear internal transcribed spacer (ITS) region. Recent fungal DNA barcoding studies have shown the low taxonomic resolution of the ITS region and suggested the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as an alternative molecular marker to identify Pythium species. In this study, we applied an analysis of both the ITS and cox1 regions to clarify the taxonomic relationships of Korean Pythium species. From the results, the two closely related Pythium species (P. chondricola and P. porphyrae) showed the same ITS sequence, while the cox1 marker successfully discriminated P. chondricola from P. porphyrae. This is the first report of the presence of P. chondricola from the infected blade of Pyropia yezoensis in Asia. This finding of the algal pathogen provides important information for identifying and determining the distribution of Pythium species. Further studies are also needed to confirm whether P. chondricola and P. porphyrae are coexisting as algal pathogens of Pyropia species in Korea.

A Quick and Safe Method for Fungal DNA Extraction

  • Chi, Myoung-Hwan;Park, Sook-Young;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.108-111
    • /
    • 2009
  • DNA-based studies, including cloning and genotyping, have become routine in fungal research laboratories. However, preparation of high-quality DNA from fungal tissue requires much time and labor and is often a limiting step for high-throughput experiments. We have developed a quick and safe (QS) DNA extraction method for fungi. Time efficiency and safety in the QS method were achieved by using plate-grown mycelia as the starting material, by eliminating phenol-chloroform extraction procedures, and by deploying a simple electric grinder. This QS method is applicable not only to a broad range of microbial eukaryotes, including true fungi and oomycetes, but also to lichens and plants.

Occurrence of Zoosporic Organisms in the Western Region of Saudi Arabia

  • El-Nagda, M.A.
    • Mycobiology
    • /
    • 제28권4호
    • /
    • pp.193-196
    • /
    • 2000
  • Thirty-eight species in addition to 2 varieties (3 unidentified) of zoosporic organisms belonging to 14 genera of Oomycetes and 3 genera of Chytridiomycetes were recovered from 50 soil samples randomly collected from different localities in the western region of Saudi Arabia. Allomyces and Dictyuchus have the highest frequency of occurrence while Achlya, Aqualinderella, Saproleginia and Phytophthora were of moderate occurrence, The remaining genera were less frequent. Seven species and two varieties were new records to Saudi Arabia, which are Achlya oblongata, Allomyces javancius var. allomorphus, Aphanomyces stellatus, Blastoccladia gracile, Dictyuchus magnusii, Olpidiopsis Saproleginia var. levis, Olpidium species, Phytophthora megasperma, and Saproleginia turfosa. Water and organic matter contents of soil samples are considered as major factors influencing the prevalence and occurrence of zoosporic organisms.

  • PDF

Biological activity of Ethaboxam: the first Korean fungicide

  • Kim, Dal-Soo;Chun, Sam-Jae
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2004년도 The 2004 KSPP Annual Meeting & International Symposium
    • /
    • pp.36-38
    • /
    • 2004
  • Ethaboxam is a new fungicidal active ingredient that inhibits growth of plant pathogens specifically belonging to Oomycetes with protective, curative, systemic and translaminar activity in plants. Modes of action studies revealed that ethaboxam simultaneously inhibits cytoskeleton formation and mitochondrial respiration of Phytophthora infestans at low concentrations. There have been no indications of resistance development when tested for baseline resistance monitoring to 261 isolates of P. infestans in Korea and Europe and 150 populations of Plasmopara viticola populations in Europe for 3 years since 2000. In a selective study with vine trees artificially inoculated with P. viticola repeatedly for 10 generations in greenhouse, there have been no changes in sensitivity to ethaboxam among four natural populations of P. viticola. Furthermore, ethamoxam has not shown any cross resistance with azoxystrobin, mefenoxam, dimethomorph and cymoxanil. Based on the study results from modes of action and resistance development, ethaboxam appears to be unlikely to develop resistance in field applications.

  • PDF

New Fungicides: Opportunities and Challenges - A Case Study with Dimethomorph

  • Spadafora, V. J.;Sieverding, E.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1998년도 Proceedings of International symposium on Recent Technology of Chemical Control of Plant Diseases
    • /
    • pp.50-69
    • /
    • 1998
  • Dimethomorph is a novel fungicide with a high level of activity against diseases induced by certain Oomycetes, including fungal populations that are resistant to other products. In several ways, this fungicide illustrates the opportunities and challenges presented by many modern pesticides. The specific mode of action, which affects cell wall formation, is associated with a very high level of performance and low dose rates under field conditions. These low dose rates, combined with a low level of toxicity to non-target organisms present an outstanding safety profile. This same highly-specific mode of action, however, limits the spectrum of activity and suggests the need for a resistance management plan, both of which must be addressed in new product development. In addition, the biological and physiochemical properties of this, and other new products are not adequately described by the traditional classification of fungicides into“protectant”and“systemic”types. These unique profiles provide novel and useful products for disease control.

  • PDF

Variation of Soil Mycoflora in Decomposition of Rice Stubble from Rice-wheat Cropping System

  • Vibha, Vibha;Sinha, Asha
    • Mycobiology
    • /
    • 제35권4호
    • /
    • pp.191-195
    • /
    • 2007
  • The colonization pattern and extent of decay produced in paddy stubble by soil inhabiting mycoflora were done by using nylon net bag technique. Among the three methods used for isolation of fungi, dilution plate technique recorded the highest number of fungi followed by damp chamber and direct observation method. Nutrient availability and climatic conditions (temperature, humidity and rainfall) influenced the occurrence and colonization pattern of fungi. Maximum fungal population was recorded in October ($48.99{\times}10^4/g$ dry litter) and minimum in May ($11.41{\times}10^4/g$ dry litter). Distribution of Deuteromycetous fungi was more in comparison to Zygomycetes, oomycetes and ascomycetes. In the early stage of decomposition Mucor racemosus, Rhizopus nigricans, Chaetomium globosum and Gliocladium species were found primarly whereas at later stages of decomposition preponderance of Aspergillus candidus, Torula graminis, Cladosporiun cladosporioides and Aspergillus luchuensis was recorded.